
1

Antelope Toolbox for Matlab:

Version 1.1

User’s Manual and Tutorial

Kent Lindquist
Lindquist Consulting
K. Lindquist 7/16/06

2

Introduction

This document describes an Antelope Software toolbox for Matlab. Matlab is a product of Math-
works, Inc. Antelope is a product of Boulder Real-Time technologies, Inc. Included in Antelope is
the Datascope relational database system. The major strengths of this Matlab toolbox include
those of the Antelope package itself, such as schema-independent relational database support, a
generalized and powerful parameter-file management architecture, and a number of tools useful
to seismologists.

This toolbox follows closely the interfaces to Datascope and Antelope built into other scripting
environments such as Perl and TCL/Tk. This toolbox was developed under Solaris 2.6 on Sun
Ultra computers, using Matlab version 5.3, and has since been upgraded for consistency with
Solaris 2.8, Linux, and Matlab 6.5.

Installation

The Antelope Toolbox for Matlab is intended to be installed in

$ANTELOPE/data/matlab/antelope

The source code for the package is available via the Antelope contributed-code web site, http://
www.indiana.edu/~aug.. The Antelope toolbox should compile into the correct place along with
the rest of the contributed code. The $MATLAB environment variable should be set correctly
before compilation.

In addition, the paths to the Matlab commands need to be made available to the users. There are
several ways this can be done. A simple way for users to do this for themselves is to run the Mat-
lab command

>> run([getenv(‘ANTELOPE’),’/data/matlab/antelope/scripts/setup_antelope.m’])

A system-wide strategy to do this is to modify the file

$MATLAB/toolbox/local/pathdef.m.

to have three more entries1:

1. Note the assumption that the ANTELOPE environment variable is correctly set. Note also that the old
utility install_matlab_antelope_links is deprecated and out of date. With Matlab 6.1 and higher, no links
should be necessary.
K. Lindquist 7/16/06

3

p = [...
 getenv(‘ANTELOPE’),’/data/matlab/antelope/antelope:’,...
 getenv(‘ANTELOPE’),’/data/matlab/antelope/scripts:’,...
 getenv(‘ANTELOPE’),’/data/matlab/antelope/examples:’,...
 matlabroot,’/toolbox/matlab/general:’,...
 matlabroot,’/toolbox/matlab/ops:’,...

There are three directories that get included in the path. The $ANTELOPE/data/matlab/antelope/
antelope directory is for the main routines of the Antelope Toolbox for Matlab. The $ANTE-
LOPE/data/matlab/antelope/examples directory is for the example scripts for each command, dis-
cussed below. The $ANTELOPE/data/matlab/antelope/scripts directory is a common location for
scripts that are written using the Antelope Toolbox for Matlab. Users that write scripts of general
utility may want to put them in this directory.

Finally, there is an additional directory $ANTELOPE/data/matlab/antelope/html with the html
versions of all the documentation, plus a copy of this tutorial. This path should be added to the file

$MATLAB/toolbox/local/docopt.m

by changing the docpath option (under the “elseif isunix” clause in docopt.m) to

docpath = [getenv(’ANTELOPE’),’/data/matlab/antelope/html’];

Help

All toolbox commands are documented with the standard Matlab help utilities. To see a list of
available commands, type

>> help antelope

or (for the Matlab help window)

>> helpwin antelope

or (for an HTML index of the help entries in a web browser)

>> doc antelope

For a list of examples, type

>> help antelope/examples

‘For help on individual commands, give the name of the command. For example:
K. Lindquist 7/16/06

4

>> help dbopen

 DBOPEN Open a Datascope Database

 DBPTR = DBOPEN (FILENAME, OPENTYPE)

 dbopen opens the database specified by the path name
 FILENAME, using the permissions given by opentype. A
 database pointer with the database index filled in is
 returned in DBPTR. The opentype may be either r (for read
 only) or r+ (for reading and writing). In the latter
 case, the db package will attempt to open tables
 read/write, but if permissions are incorrect, will open
 the table read only.

 Antelope Toolbox for Matlab
 [Antelope is a product of Boulder Real Time Technologies, Inc.]
 Kent Lindquist
 Lindquist Consulting
 1997-2003

>>

The other versions of the help system also work for individual commands:

>> helpwin dbopen

or

>> doc dbopen

For further insight, consult the man pages and manuals provided with the Antelope software and
the Matlab software.

Finally, all commands in the Antelope Toolbox for Matlab come with an example demonstrating
their use. To see the example in action, precede the command with the prefix “dbexample_”. For
example, to see the dbopen command being used, type dbexample_dbopen. There is also a
script dbexample_runall which will run all available examples. This is useful primarily for sys-
tem testing. There are also a couple example scripts covering special topics, such as
dbexample_joins, dbexample_get_hypocenter_vitals, dbexample_sort_and_subset, and
dbexample_writing.
K. Lindquist 7/16/06

5

Opening a Database

Databases are opened with the dbopen command, which takes a filename and a permissions flag.
For convenience the Matlab Antelope Toolbox contains a demonstration database from the Joint
Seismic Program Center. The schema for this database is CSS3.0. The filename of this database is
available through the command

>> dbexample_get_demodb_path
demodb_path is /opt/antelope/4.2u/data/matlab/antelope/examples/demodb/demo
>>

The dbopen command returns a four-element structure called a database pointer:

>> db = dbopen(demodb_path,’r’)

db =

 database: 0
 table: -501
 field: -501
 record: -501

>>

Under normal conditions the user does not modify these fields directly, with the possible excep-
tion of the record field. Two tools are provided to aim the database pointer at specific parts of the
database (i.e. set the integers correctly). dblookup is the most general of the two. A shorthand
version of dblookup, dblookup_table, is provided for the most common operation, aiming the
database pointer at a given table of the database:

>> db=dblookup_table(db,’origin’)

db =

 database: 0
 table: 10
 field: -501
 record: -501

>>

Databases may be closed with the dbclose command, which destroys the database pointer:
K. Lindquist 7/16/06

6

>> dbclose(db)
>>

Handling Parametric Data

The following examples show some common database operations. These examples presume you
have already opened the database and looked up the origin table, as shown in the steps above. We
can subset our database:

>>db=dbsubset(db,’mb > 6’);

Find out how many records we have:

>> dbquery(db,’dbRECORD_COUNT’)

ans =

 18

>>

Ask for a column of values:

>> mb=dbgetv(db,’mb’)

mb =

 6.4200
 6.4000
 6.2000
 6.2000
 6.2300
 6.4000
 6.3100
 6.0200
 6.2800
 6.5000
 6.5700
 6.1100
 6.0500
 6.2100
K. Lindquist 7/16/06

7

 6.3000
 6.3000
 6.2700
 6.1400

Or ask for several columns of values:

>> [lat,lon,depth,time] = dbgetv(db,’lat’,’lon’,’depth’,’time’);

Convert the epoch-times (seconds since 1970) for the hypocentral occurrence time to a standard
readable format:

>> strydtime(time)

ans =

 ’ 5/04/1992 (125) 8:45:10.089’
 ’ 5/12/1992 (133) 18:05:42.600’
 ’ 5/15/1992 (136) 7:05:05.300’
 ’ 5/17/1992 (138) 9:49:19.100’
 ’ 5/17/1992 (138) 9:49:21.689’
 ’ 5/17/1992 (138) 10:15:31.300’
 ’ 5/17/1992 (138) 21:36:00.492’
 ’ 5/19/1992 (140) 14:42:48.813’
 ’ 5/20/1992 (141) 12:20:34.700’
 ’ 5/21/1992 (142) 4:59:57.500’
 ’ 5/21/1992 (142) 5:00:00.399’
 ’ 5/21/1992 (142) 18:05:48.543’
 ’ 5/22/1992 (143) 21:40:36.691’
 ’ 5/25/1992 (146) 2:51:32.311’
 ’ 5/25/1992 (146) 16:55:04.100’
 ’ 5/27/1992 (148) 5:13:38.800’
 ’ 5/27/1992 (148) 5:13:41.635’
 ’ 5/28/1992 (149) 21:24:51.822’

Or we can customize the time-conversion format:

>> epoch2str(time,’%A %b %d %I:%M %p %Z’)

ans =

 ’Monday May 04 08:45 AM UTC’
 ’Tuesday May 12 06:05 PM UTC’
 ’Friday May 15 07:05 AM UTC’
 ’Sunday May 17 09:49 AM UTC’
 ’Sunday May 17 09:49 AM UTC’
K. Lindquist 7/16/06

8

 ’Sunday May 17 10:15 AM UTC’
 ’Sunday May 17 09:36 PM UTC’
 ’Tuesday May 19 02:42 PM UTC’
 ’Wednesday May 20 12:20 PM UTC’
 ’Thursday May 21 04:59 AM UTC’
 ’Thursday May 21 05:00 AM UTC’
 ’Thursday May 21 06:05 PM UTC’
 ’Friday May 22 09:40 PM UTC’
 ’Monday May 25 02:51 AM UTC’
 ’Monday May 25 04:55 PM UTC’
 ’Wednesday May 27 05:13 AM UTC’
 ’Wednesday May 27 05:13 AM UTC’
 ’Thursday May 28 09:24 PM UTC’

>>

As an aside, we can go the other way too:

>> str2epoch(’2/13/98 15:17’)

ans =

 887383020

>>

or

>> str2epoch(’now’)

ans =

 9.2039e+08

>>

We can pick out the first record in our database view (note the indexing convention!):

 >> db.record=0

db =

 database: 0
 table: 36
 field: -501
 record: 0
K. Lindquist 7/16/06

9

>>

Find the iasp91 P-phase travel time in seconds from the hypocenter to Fairbanks:

>> dbeval(db,’pphasetime(distance(lat,lon,64.836,-147.7048),depth)’)

ans =

 780.7877

>>

We can launch a spreadsheet tool (dbe) on our whole database:

>> unix([’dbe ’ demodb_path ’&’])
[1] 17990

ans =

 0

>>

and examine the individual tables by clicking on the buttons.

Handling Waveform Data

The database contains data for one earthquake. We can get the data for the P wave in one of two
ways. First we need to get the correct database pointer:

>> db=dblookup_table(db,’wfdisc’);
>> dbt=dblookup_table(db,’arrival’);
>> db=dbjoin(dbt,db);
>> db= dbsubset(db,’arrival.chan == wfdisc.chan’);
>> dbt=dblookup_table(db,’assoc’);
>> db=dbjoin(dbt,db);
K. Lindquist 7/16/06

10
>>dbt=dblookup_table(db,’origin’);
>> db=dbjoin(dbt,db);
>> db=dbsubset(db,’sta == "CHM" && chan == "BHZ"’);
>> [time,endtime]=dbgetv(db,’time’,’endtime’)

time =

 7.061397100070000e+08

endtime =

 7.061398415000000e+08

>>

Now we have a couple options for getting data. We can use trload_css to load the database wave-
form contents into a trace-object, another database pointer that includes information on wave-
forms loaded into memory; or we can use trgetwf. The former, which is the preferred method,
requires us to call trextract_data to get the actual waveform data. Further detail on these com-
mands is provided in their descriptions below, especially in the text for the trload_css command.

>> tr=trload_css(db,time,endtime);
>>data1=trextract_data(tr);

Or we can go directly to the waveform data from the database pointer:

>> [data2,nsamp,t0,t1]=trgetwf(db,time,endtime);

Response information

Response information stored in a database may be loaded into a dbresponse object for evaluation.
We precede our demonstration of this with an extraction of the correct filename from the data-
base:

>> db=dblookup_table(db,’sensor’);
>> dbinst=dblookup_table(db,’instrument’);
>> db=dbjoin(db,dbinst);
>> db.record=dbfind(db,’sta == "CHM" && chan == "BHZ"’);
>> respfile = dbfilename(db)

K. Lindquist 7/16/06

11
respfile =

/opt/antelope/4.2u/data/matlab/antelope/examples/demodb/response/sts2_vel_RT72A.1

>>

Now we use this filename to construct a dbresponse object:

>> resp=dbresponse(respfile)
resp =

 dbresponse object: 1-by-1

>>

Next we use the eval_response command to evaluate the response curve at 5 Hz, noting the con-
version to radians/sec:

>> eval_response(resp, 5 * 2 * pi)

ans =

 0.9969 - 0.0749i

>>

The returned value is in general complex. Next we evaluate the response for several frequencies at
once:

>> myvals = eval_response(resp,[0.1; 1; 10]*6.28)

myvals =

 0.9968 - 0.0502i
 0.6239 - 0.7815i
 -0.0115 - 0.0053i

>>

These results are of course amenable to standard Matlab processing:

>> abs(myvals)

ans =

 0.9980
K. Lindquist 7/16/06

12
 1.0000
 0.0126

>>angle(myvals)*180/pi

ans =

 -2.8853
 -51.3982
 -155.2421

>>

When we are done with the dbresponse object, we remove it with the free_response command:

>> free_response(resp)
>>

Parameter files

Antelope parameter files allow the specification of ASCII-text parameter files. For complete doc-
umentation, see the Antelope manuals.

As an example, here’s a small text file in my current working directory:

nordic% cat /home/kent/temp/test.pf
cat /home/kent/temp/test.pf

Test parameter file

number_of_things 3
string_thing Dr. Seuss Lives
myboolean True

thing_names &Tbl{
ball
chew-toy
toy mouse
}

thing_owners &Arr{
 ball Kirby
K. Lindquist 7/16/06

13
 chewtoy Rover
 mouse Jasmine
}
on_the_fly &ask What is a convenient value for this
nordic%

To open this as a parameter file, type the following:

>> pf=dbpf(’test’)

pf =

 dbpf object: 1-by-1

>>

The returned object is called a parameter-file (dbpf) object. This one was actually constructed
from the single file shown above. However, the PFPATH environment variable specifies all the
locations which may contain parameter files, and all files of the specified name are read. Repeated
parameters are overwritten in the order in which they are read, allowing users to override default
settings of software packages with subsets of parameter files in their own directories and with cor-
rect settings of PFPATH.

To see which existent, readable files will contribute to a dbpf object, use pffiles:

>> pffiles(’test’)

ans =

 ’./test.pf’

>>

To see all the possibilities that are investigated, regardless of whether they exist or are readable,
use the ‘all’ option:

>> pffiles(’test’,’all’)

ans =

 ’/opt/antelope/4.2u/data/maps/site/test.pf’
 ’/opt/antelope/4.2u/data/pf/test.pf’
 ’/opt/antelope/4.2u/data/pf/site/test.pf’
 ’/home/kent/data/pf/test.pf’
 ’./test.pf’
K. Lindquist 7/16/06

14
>>

Now, to see the parameter names in the parameter-file object, use pfkeys:

>> pfkeys(pf)

ans =

 ’number_of_things’
 ’string_thing’
 ’thing_names’
 ’thing_owners’

>>

To convert the entire object to a string, use pf2string:

>> pf2string(pf)

ans =

myboolean True
number_of_things 3
on_the_fly &ask What is a convenient value for this
string_thing Dr. Seuss Lives
thing_names &Tbl{
ball
chew-toy
toy mouse
}
thing_owners &Arr{
ball Kirby
chewtoy Rover
mouse Jasmine
}

>>

 To extract a single numeric parameter out of the dbpf object, use pfget_num. This actually
retrieves the parameter as a string, then applies the Matlab str2num function.

>> pfget_num(pf,’number_of_things’)

ans =

 3
K. Lindquist 7/16/06

15

>>

To get string values, use pfget_string:

>> pfget_string(pf,’string_thing’)

ans =

Dr. Seuss Lives

>>

To get boolean values, use pfget_boolean. This returns -1 (which evaluates to true in an if state-
ment) for affirmative values (‘true’,’yes’, etc.) in the parameter file, and 0 for negative values.

>> pfget_boolean(pf,’myboolean’)

ans =

 -1

>>

Lists of things may be retrieved from the parameter file with pfget_tbl:

>> pfget_tbl(pf,’thing_names’)

ans =

 ’ball’
 ’chew-toy’
 ’toy mouse’

>>

Also, the parameter file may contain associative arrays of key--value pairs. Notice that such an
entity is really just like a nested parameter file, so these are returned as subsidiary dbpf objects, as
shown by this return from the pfget_arr command:

>> pfget_arr(pf,’thing_owners’)

ans =

 dbpf object: 1-by-1

K. Lindquist 7/16/06

16
>>

Of course, Matlab has a built-in strategy for dealing with blocks of key-value pairs, namely the
structure. Therefore there is a command pf2struct to convert a dbpf object to a Matlab struct.
There is a caveat here, however. Matlab structure-field names are limited in length, and are not
allowed to contain any strange characters. The underlying parameter-file implementation is much
more tolerant. Therefore if you have long names or weird names with dots and hashes in them,
pf2struct will fail and you will need to use pfget_string or other appropriate functions on the
subsidiary dbpf object.
With reasonable parameter files, however, pf2struct will work fine:

>> mystruct=pf2struct(ans)

mystruct =

 ball: ’Kirby’
 chewtoy: ’Rover’
 mouse: ’Jasmine’

>>

In order to simplify reading complex, nested parameter files, the pfget_arr, pfget_tbl, pf2struct,
pfget, and pfresolve commands (the latter are described below) allow a ‘recursive’ option:

>> pfget_arr(pf,’thing_owners’,’recursive’)

ans =

 ball: ’Kirby’
 chewtoy: ’Rover’
 mouse: ’Jasmine’

>>

The pfget routine is generic, exercising its discretion on what datatype to return. String entries
that are interpretable as numbers by Matlab’s str2double function are returned as numbers [note
that this is a change from the original behavior of the Antelope Toolbox for Matlab]:

>> pfget(pf,’thing_names’)

ans =

 ’ball’
 ’chew-toy’
 ’toy mouse’

K. Lindquist 7/16/06

17
>>

If a parameter-file entry is specified with the &ask tag, as is the parameter named on_the_fly
above, the user will be queried directly. This is based on the Matlab INPUT command, which
means that answer may be given using the full-fledged Matlab interpreter:

>> pfget(pf,’on_the_fly’)
What is a convenient value for this : 27 + 13*pi

ans =

 67.8407

>>

Repeated calls are dynamically re-queried:

>> pfget(pf,’on_the_fly’)
What is a convenient value for this : ’a string value’

ans =

a string value

>>

Next, we will look at a more complex example. Real-time operations at the Alaska Earthquake
Information Center are managed in part by a parameter-file specifying real-time system setup.
This is actually one of several files, helping administrators track the multiple Antelope Seismic
Information Systems that are running.

>> setup=dbpf(’aeic_rtsys’)

setup =

 dbpf object: 1-by-1

>>

Again, we will use the pffiles command to see the filenames contributing to this dbpf object:

>> pffiles(’aeic_rtsys’)

ans =

 ’/opt/antelope/4.2u/data/pf/site/aeic_rtsys.pf’
K. Lindquist 7/16/06

18

>>

As an interlude to help the reader understand the following demonstration of parameter file com-
mands, here is the aeic_rtsys.pf parameter file itself:

nordic% cat /opt/antelope/4.2u/data/pf/site/aeic_rtsys.pf

primary_system op

processing_systems &Arr{

 op &Arr{
 system_name Operation
 host earlybird
 site_database /iwrun/op/params/Stations/worm
 archive_database /iwrun/op/db/archive/archive
 }

 dev &Arr{
 system_name Development
 host nordic
 site_database /iwrun/dev/params/Stations/worm
 archive_database /iwrun/dev/db/archive/archive
 }

 bak &Arr{
 system_name Backup
 host ice
 site_database /iwrun/bak/params/Stations/worm
 archive_database /iwrun/bak/db/archive/archive
 }
}

rtexec_run_dirs &Arr{
 nordic /iwrun/dev/run
 earlybird /iwrun/op/run
 ice /iwrun/bak/run
 fk /home/bbanddat/run
 beam /iwrun/acq/run
 marvin /home/uafarr/run
 megathrust /home/beeper/run
 strike /export/mitch/run
 ugle /Seis/ugle1/run
}
nordic%
K. Lindquist 7/16/06

19
Again, the pfkeys command names the component parameters:

>> pfkeys(setup)

ans =

 ’primary_system’
 ’processing_systems’
 ’rtexec_run_dirs’

We will take three approaches to answering the question “where is the primary acquisition system
currently putting continuous waveform data.” The first mechanism of asking this from the param-
eter file is deliberately long-winded, for instructional purposes:

>> sys=pfget(setup,’processing_systems’)

sys =

 dbpf object: 1-by-1

>> pfkeys(sys)

ans =

 ’bak’
 ’dev’
 ’op’

>>
>> op = pfget(sys,’op’)

op =

 dbpf object: 1-by-1

>>
>> pfkeys(op)

ans =

 ’archive_database’
 ’host’
 ’site_database’
 ’system_name’

K. Lindquist 7/16/06

20
>> pfget_string(op,’archive_database’)

ans =

/iwrun/op/db/archive/archive

>>

Now let’s speed that up a bit:

>> nestedanswer = pf2struct(setup,’recursive’);
>> nestedanswer.processing_systems.op.archive_database

ans =

/iwrun/op/db/archive/archive

>>

In addition to the parameter-file reading interface described above, there is an alternative interface
through the pfresolve command. This allows square-brackets in the parameter name to index list
(Tbl) entries, and curly braces to index associative-array entries. We will combine these with a
nested pfget inquiry to find the name of the primary system:

>> name=[’processing_systems{’ pfget(setup,’primary_system’) ...
’}{archive_database}’];
>> pfresolve(setup,name)

ans =

/iwrun/op/db/archive/archive

>>

Note that this setup allows system maintainers to smoothly transition between operational and
backup Antelope systems. By switching the primary system from Operation to Backup, operators
can preserve continuous, transparent service to user processes while installing new disk drives
etc.

About this time, when one gets multiple dbpf objects constructed and needs to keep track of them,
it is useful to be able to identify the type of each dbpf object. This is done with the pftype com-
mand:

>> pftype(sys)

ans =
K. Lindquist 7/16/06

21

PFARR

>> pftype(setup)

ans =

PFFILE

>>

Top-level dbpf objects will be of type PFFILE. Subsidiary arrays are indicated with PFARR. The
names under which PFFILE-type dbpf objects were launched may be obtained with the pfname
command:

>> pfname(pf)

ans =

test

>> pfname(setup)

ans =

aeic_rtsys

>>

When one is done with a Matlab dbpf object, one can call pffree or clear() on it in order to
remove the object. Note, however, that subsidiary parameter-file objects will no longer be useful
once the parent is cleared, so it is important to get all the information one wants out of a parameter
file object before freeing or clearing it.

>> pffree(setup)
>>
>> clear(op)
>> clear(sys)
>>

Values may also be written to parameter files with the pfput series of command, or with the dbpf
command used to compile strings into parameter files. This is explained in the documentation for
the individual commands below. If a parameter file is changing from the outside as your Matlab
program runs, the pfupdate command may be used to keep up with any changes to the parameter
file.
K. Lindquist 7/16/06

22
Advanced Example

Get 100 seconds of data that occurred 10 minutes ago on the network of stations at Shishaldin vol-
cano:

pf=dbpf(’aeic_rtsys’);

% Get the name of the current archive database from our local parameter file
primary = pfget(pf,’primary_system’);
dbname = pfresolve(pf,[’processing_systems{’ primary ’}{archive_database}’]);

db = dbopen(dbname, ’r’);

db = dblookup_table(db, ’affiliation’);

net = ’Shshldn’;
db = dbsubset(db, [’net == "’ net ’"’]);

dbw = dblookup_table(db, ’wfdisc’);
db=dbjoin(db, dbw);

% Get data from 10 minutes ago:
st = str2epoch(’now’) - 600;
et = st + 100;

tr = trload_css(db, st, et);

nrecs = dbquery(tr, ’dbRECORD_COUNT’);

for i=1:nrecs,
 subplot(nrecs, 1, i)
 tr.record=i-1;
 data=trextract_data(tr);
 plot(data)
 ylabel(dbgetv(tr,’sta’));
end

trdestroy(tr);
dbclose(db);

Channel names are not labelled. One station has three components, and another has both a vertical
component and a pressure sensor, explaining the repetition of names in this figure.
K. Lindquist 7/16/06

23
K. Lindquist 7/16/06

24
Examples of each command

Many of these presume you have run the command dbexample_get_demodb_path, which sets
the variable demodb_path to the name of a sample database. An attempt was made to make each
of these examples self-sufficient. Hence there are usually a number of setup commands to make
the example call possible. Some of the examples may be a bit contrived. Note that in practice, it is
not necessary to keep reopening a database or a parameter-file object! The parameter-file routines
use the dbloc2.pf and the rtexec.pf parameter files as examples. They should be available on any
properly installed Antelope system. There are also Matlab .m files showing examples of each
command in use. These example files should be in $ANTELOPE/data/matlab/antelope/examples
on a properly configured system. For a list of available examples, type help antelope/examples.

arr_slowness

The arr_slowness command calculates the slownesses of all known seismic phases, given the dis-
tance delta in degrees to the earthquake and the depth of the earthquake in kilometers. The default
travel-time model is IASPEI ‘91, however this may be modified with the TAUP_TABLE environ-
ment variable. The returned slowness values are in seconds/km.

>> delta = 20;
>> depth = 10;

>> [slowness, phasenames] = arr_slowness(delta, depth);

>> space(1:length(slowness),1) = ‘ ‘;

>> [num2str(slowness) space char(phasenames)]

ans =

 0.097873 P
 0.10638 Pn
 0.097967 pP
 0.097943 sP
 0.10668 pPn
 0.082873 P
 0.1066 sPn
 0.082883 pP
 0.08288 sP
 0.12307 PnPn
 0.17998 S
 0.21628 Sn
 0.2027 S
K. Lindquist 7/16/06

25
 0.21256 S
 0.18023 sS
 0.21638 sSn
 0.20348 sS
 0.21217 sS
 0.14975 S
 0.14986 pS
 0.14981 sS
 0.22062 SnSn
 0.016438 PcP
 0.021013 ScP
 0.021017 PcS
 0.030333 ScS
 0.0039843 PKiKP
 0.0039835 pPKiKP
 0.0039837 sPKiKP
 0.0042026 SKiKP
-0.0040705 PKKPdf
-0.0038634 SKKPdf
-0.0038632 PKKSdf
-0.0036761 SKKSdf
-0.0053076 P’P’df
 -0.039783 P’P’ab
-0.0041508 S’S’df

>>

arrtimes

The arrtimes command calculates the travel-times of all known seismic phases, given the dis-
tance delta in degrees to the earthquake and the depth of the earthquake in kilometers. The default
travel-time model is IASPEI ‘91, however this may be modified with the TAUP_TABLE environ-
ment variable. The returned travel-time values are in seconds. In this example, we feed the result
to strtdelta to produce a more readable result.

>> delta = 20;
>> depth = 10;

>> [times, phasenames] = arrtimes(delta, depth);

>> [char(strtdelta(times)) char(phasenames)]

ans =

 4:33 minutes P
K. Lindquist 7/16/06

26
 4:34 minutes Pn
 4:36 minutes pP
 4:37 minutes sP
 4:37 minutes pPn
 4:38 minutes P
 4:39 minutes sPn
 4:41 minutes pP
 4:42 minutes sP
 4:49 minutes PnPn
 8:18 minutes S
 8:20 minutes Sn
 8:20 minutes S
 8:21 minutes S
 8:23 minutes sS
 8:24 minutes sSn
 8:25 minutes sS
 8:25 minutes sS
 8:27 minutes S
 8:30 minutes pS
 8:32 minutes sS
 8:36 minutes SnSn
 8:48 minutes PcP
 12:25 minutes ScP
 12:26 minutes PcS
 16:07 minutes ScS
 16:37 minutes PKiKP
 16:41 minutes pPKiKP
 16:42 minutes sPKiKP
 20:08 minutes SKiKP
 31:47 minutes PKKPdf
 35:18 minutes SKKPdf
 35:19 minutes PKKSdf
 38:50 minutes SKKSdf
 40:17 minutes P’P’df
 42:47 minutes P’P’ab
 54:25 minutes S’S’df

>>

cggrid
K. Lindquist 7/16/06

27
The cggrid command creates a Matlab object with references an Antelope computational-geome-
gry grid. This command may be given one argument or three. A single argument will be inter-
preted as a filename, out of which a previously saved grid will be retrieved. If three arguments are
given, they should be matrices of X,Y, and Z coordinate values for the grids, in the style of the
Matlab mesh command.

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z)

cgg =

 cggrid object: 1-by-1

>>

cggrid_dx

This command returns the grid-spacing of a computational-geometry grid in the x direction:

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);

>> dx = cggrid_dx(cgg)

dx =

 0.2000

>>

cggrid_dy

This command returns the grid-spacing of a computational-geometry grid in the y direction:

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);

>> dx = cggrid_dy(cgg)

dy =

 0.3000
K. Lindquist 7/16/06

28
>>

cggrid_free

The cggrid_free command removes a previously created cggrid object, freeing all underlying ref-
erences to the Antelope cgeom(3) library. This is equivalent to the (overloaded) clear command
for the cggrid object.

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);
>> cggrid_free(cgg)
>>

cggrid_get

The cggrid_get command returns a two-dimensional array of x,y, and z values for the specified
grid. The second and third return values are the number of points in the x and y directions, respec-
tively (useful if one wishes to call the reshape command on the result).

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);

>> [mytriplets, nx, ny] = cggrid_get(cgg);

>> whos mytriplets
 Name Size Bytes Class

 mytriplets 441x3 10584 double array

Grand total is 1323 elements using 10584 bytes

>> nx

nx =

 21

>> ny

ny =

 21
K. Lindquist 7/16/06

29

0

0

0

0

>>

cggrid_getmesh

The cggrid_getmesh command formats a cggrid object into three arrays of X,Y, and Z coordinate
values, suitable for direct use with the Matlab mesh, surf, and related commands.

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);
>> [myx, myy, myz] = cggrid_getmesh(cgg);

>> surf(myx, myy, myz)
>>

−2

−1

0

1

2

−3

−2

−1

0

1

2

3
0

.2

.4

.6

.8

1

K. Lindquist 7/16/06

30
cggrid_nx

This command returns the number of points for a computational-geometry grid in the x direction:

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);

>> nx = cggrid_nx(cgg)

nx =

 21

>>

cggrid_ny

This command returns the number of points for a computational-geometry grid in the y direction:

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);

>> ny = cggrid_ny(cgg)

ny =

 21

>>
cggrid_probe

This command returns the value of a cggrid at a specified test point, or NaN if the test point is out-
side the grid. If the test point does not lie exactly on a grid node, bilinear interpolation is used to
extract the grid value.

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);

>> x_test = 1.138;
>> y_test = -2.045;
K. Lindquist 7/16/06

31
>> a_value = cggrid_probe(cgg, x_test, y_test)

a_value =

 0.0047

>>

cggrid_write

The cggrid_write command sends a cggrid object to a filename in the specified format. The for-
mat is indicated by a two-letter string, such as ‘as’ or ‘t4’, as documented in the Unix man-page
cggrid(5).

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);
>> outfile = [’/tmp/mycggrid_’ getenv(’USER’)];

>> cggrid_write(cgg, ’t4’, outfile)
>>

cggrid2db

The cggrid2db command assumes the specified grid is associated with an earthquake. The data-
base-pointer provided must be aimed at a row containing the origin-time (‘time’) and origin-id
(‘orid’) for the hypocenter. The database must also contain a ‘qgrid’ table as in the gme1.0 data-
base schema, to hold a reference to the output qgrid file. The arguments to cggrid2db in the
example below are, respectively, the input grid; the database pointer containing information on
the corresponding earthquake; the name of the recipe used to create the grid; the name of the grid
itself; a formatting string for the filename in which to save the grid; the format of the grid; and the
units of the grid (acceleration in g):

>> % Construct a contrived grid:

>> [X,Y] = meshgrid(-2:0.2:2,-3:0.3:3);
>> Z = exp(-X.^2 - Y.^2);
>> cgg = cggrid(X, Y, Z);

>> % Save this to a fake database as though it belonged
>> % to an earthquake:

>> output_dir = [’/tmp/exampledir_’ getenv(’USER’)];
>> unix([’/bin/rm -rf ’ output_dir]);
>> unix([’mkdir ’ output_dir]);
K. Lindquist 7/16/06

32
>> output_dbname = [output_dir ’/newdb’];
>> fid = fopen(output_dbname, ’w’);
>> fprintf(fid, ’#\nschema rt1.0:gme1.0\n’);
>> fclose(fid);

>> db=dbopen(output_dbname,’r+’);
>> db=dblookup(db,’’,’origin’,’’,’’);

>> orid = dbnextid(db, ’orid’);
>> db.record = dbaddv(db, ’lat’, -116, ...
 ’lon’, 34, ...
 ’depth’, 0, ...
 ’time’, str2epoch(’12/31/2002’), ...
 ’orid’, orid);

>> cggrid2db(cgg, db, ’dbexample_fake’, ’testgrid’, ...
 ’%Y/%j/%{gridname}_%{recipe}.%{qgridfmt}’, ...
 ’t4’, ’g’, ‘pga’, ‘matlab_demo’);
>>

clear_register

Most of the toolbox routines are pretty good about complaining of problems when they occur.
However, if you suspect the package is caching a useful error message, this is the way to bring
them to the surface.

>> clear_register(’print’)
>>
>> % [...if there were error messages accumulated, this would have flushed them out...]

compare_response

The compare_response command may be used to compare the coefficients for two response
objects, returning a true value if they differ. In the following contrived example, two arbitrarily
chosen response structures are loaded and compared:

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’instrument’);
>> db.record=0;
>> file1=dbfilename(db);
>> resp1 = dbresponse(file1);
>> db.record=1;
>> file2=dbfilename(db);
>> resp2 = dbresponse(file2);>>
K. Lindquist 7/16/06

33
>> compare_response(resp1, resp2)
1
>>

db2struct

This is probably one of the more useful commands in the toolbox. It can operate on a database
table or on a view that contains only one table (for example, it will work on a view showing a sub-
set of the origin table, but not a view that was made by joining the origin and assoc tables).

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db, ’origin’);
>> db.record=0;
>>
>> % Example 1:
>> db2struct(db)

ans =

 lat: 40.0740
 lon: 69.1640
 depth: 155.1660
 time: 7.0437e+08
 orid: 1
 evid: -1
 jdate: 1992118
 nass: 7
 ndef: 7
 ndp: -1
 grn: 715
 srn: 48
 etype: ’-’
 review: ’’
 depdp: -999
 dtype: ’f’
 mb: 2.6200
 mbid: 1
 ms: -999
 msid: -1
 ml: -999
 mlid: -1
 algorithm: ’locsat:kyrghyz’
 auth: ’JSPC’
 commid: -1
 lddate: 790466871
K. Lindquist 7/16/06

34
>>
>>
>> % Example 2:
>> db=dblookup(db,’’,’’,’’,’dbALL’);
>> db2struct(db)

ans =

1x1351 struct array with fields:
 lat
 lon
 depth
 time
 orid
 evid
 jdate
 nass
 ndef
 ndp
 grn
 srn
 etype
 review
 depdp
 dtype
 mb
 mbid
 ms
 msid
 ml
 mlid
 algorithm
 auth
 commid
 lddate

>>
>>
>> % Example 3:
>> db.record=0;
>> db2struct(db,’lat’,’lon’,’depth’,’mb’)

ans =

 lat: 40.0740
K. Lindquist 7/16/06

35
 lon: 69.1640
 depth: 155.1660
 mb: 2.6200

>>

dbadd

The raw storage format of the Datascope files is fixed-format ASCII rows. Usually, interaction
with the database tables is smoother if you avoid handling entire rows at once. However, there are
occasions where it is useful to move an entire row around. dbadd adds an entire database row to
the flat-file table at once. The database pointer for each table contains something called a ‘scratch’
record for that table. The scratch record is an entire row that is in memory for the sole purpose of
scribbling. In this example we add several values to the scratch row of the origin table, then write
the scratch row to the database (i.e. in this example that means we’ve written the fixed-format
ASCII row to the end of the file /tmp/newdb.origin).

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup(db,’’,’origin’,’’,’dbSCRATCH’);
>> dbputv(db,’lat’,61.5922,’lon’,-149.130,’depth’,20,’time’,str2epoch(’now’));
>> db.record=dbadd(db,’dbSCRATCH’)

db =

 database: 0
 table: 10
 field: -501
 record: 0

>>

dbadd_remark

The css3.0 schema, plus several other related schemas, have a separate table for comments. This
table is infrequently used. The dbadd_remark and dbget_remark functions encapsulate the
operations involved in adding a row to the remark table and linking it to a database row on
another table such as the origin table..

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> db.record = dbaddnull(db);
>> dbputv(db,’lat’,61.5922,’lon’,-149.130,’depth’,20,’time’,str2epoch(’now’))
>> dbadd_remark(db,’This earthquake occurred under Palmer, Alaska’)
>>
K. Lindquist 7/16/06

36
dbaddnull

Similar to dbadd, dbaddnull puts into a database table an entire fixed-format ASCII row, with
format appropriate for that table. In this case all the fields of the new row are set to their null val-
ues.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> db.record = dbaddnull(db)

db =

 database: 0
 table: 10
 field: -501
 record: 0

>>

dbaddv

This is one of the most commonly used functions in the Datascope libraries. dbaddv adds a new
fixed-format row to the specified table, setting all fields to their null values. It then modifies the
specified fields to contain the more interesting values given in each key-value pair. dbaddv
checks to make sure none of the primary keys match those for another row of the database, i.e. it
takes some steps to keep you from corrupting your database.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’))

db =

 database: 0
 table: 10
 field: -501
 record: 0

>>

dbclose
K. Lindquist 7/16/06

37
This routine closes a database pointer, freeing all the associated resources (It does no harm to the
underlying database files).

>> db = dbopen(demodb_path,’r’);
>> dbclose(db)
>>

dbcrunch

Removing rows from a database is usually done in two steps. The first is to set all the fields of a
row to their null values, but to leave the row in its place. This first step is performed by dbmark.
The second stage, accomplished by the dbcrunch command, is to actually remove the null rows
from the database table. This two-step procedure prevents skewing of all the record numbers for a
table, often useful if the program is still working on the table.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> % Add four copies of the same quake, all at slightly different times:
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-149.130,’depth’,20,’time’,str2epoch(’now’))
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>
>> db.record=1;
>> dbmark(db)
>> dbcrunch(db)
>> dbquery(db,’dbRECORD_COUNT’)

ans =

 3

>>

dbdelete

This command immediately deletes a row from a database table.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> % Add four copies of the same quake, all at slightly different times:
K. Lindquist 7/16/06

38
>> db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’))
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>
>> dbquery(db,’dbRECORD_COUNT’)

ans =

 4

>> db.record=1;
>> dbdelete(db)
>> dbquery(db,’dbRECORD_COUNT’)

ans =

 3

>>

dbeval

This command is a general-purpose calculator which has access to standard math commands, use-
ful seismological functions such as travel-time calculators, and to all the fields of a database view
which is fed to the command.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’origin’);
>> dbs=dblookup_table(db,’site’);
>> db.record=0;
>> db=dbjoin(db,dbs);
>> db.record=0;
>> dbeval(db,’arrival("PKiKP")-time’)

ans =

 982.2883

>>
>> dbeval(db,’distance(site.lat,site.lon,origin.lat,origin.lon)’)
K. Lindquist 7/16/06

39
ans =

 27.4124

>>

dbextfile

In the css3.0 schema and related schemas, many times external files are referenced in tables by
the two fields dir and dfile. The dbextfile command combines these two fields into a full path-
name, resolving all relative pathnames into absolute pathnames as well as adjusting for the actual
location of the database table. The dbextfile command requires the name of the base table from
which the dir and dfile fields should come. (Note that in many cases, the simpler dbfilename
command will suffice instead of dbextfile).

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db, ’wfdisc’);
>> dbt = dblookup_table(db, ’sensor’);
>> db = dbjoin(db, dbt);
>> dbt = dblookup_table(db,’instrument’);
>> db = dbjoin(db, dbt);

>> db.record=0;

>> dbextfile(db, ’instrument’)

ans =

/usr/local/matlab/toolbox/antelope/examples/demodb/response/sts2_vel_RT72A.1

>> dbextfile(db, ’wfdisc’)

ans =

/usr/local/matlab/toolbox/antelope/examples/demodb/wf/knetc/1992/138/210426/
19921382155.15.CHM.BHZ

>>

dbfilename
K. Lindquist 7/16/06

40
In the css3.0 schema and related schemas, many times external files are referenced in tables by
the two fields dir and dfile. The dbfilename command combines these two fields into a full path-
name, resolving all relative pathnames into absolute pathnames as well as adjusting for the actual
location of the database table.

>> db = dbopen(demodb_path,’r’);
>> dblookup_table(db,’instrument’);
>> db.record=0;
>> dbfilename(db)

ans =

/opt/antelope/4.2u/data/matlab/antelope/examples/demodb/response/sts2_vel_RT72A.1

>>

Note that if more than one table with external file references is present in the input view, only the
first one will be chosen and returned. This may not always be the intended filename. For cases
where the dir and dfile fields appear multiple times in the input view, use dbextfile instead of
dbfilename.

dbfind

This command is a general-purpose utility to hunt through a database table or view for a record
matching a specific criterion. Useful features include the ability to skip the first few matches, or to
search backwards through the view.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db, ’origin’);
>> db.record = dbfind(db,’mb>6’,0)

db =

 database: 0
 table: 10
 field: -501
 record: 80

>>
>> db.record = dbfind(db,’mb>6’,0,3)

db =

 database: 0
 table: 10
K. Lindquist 7/16/06

41
 field: -501
 record: 266

>>
>> db.record = dbfind(db,’mb>6’,’backwards’)

db =

 database: 0
 table: 10
 field: -501
 record: 1262

>>
>> dbgetv(db,’mb’)

ans =

 6.1400

>>

dbfree

This command frees up the resources allocated when a new view is created. The input database
pointer must identify a single table, that is db.table and db.database should be valid. Generally, it
is only necessary to explicitly free database views when they are very large or many of them are
made within the same program.

>> db = dbopen(demodb_path,’r’);
>> dbarrival = dblookup_table(db,’arrival’);
>> % Make a temporary view
>> dbtemp = dbsubset(dbarrival, ’sta == "AAK"’);

>> % Get something out of the temporary view
>> dbgetv(dbtemp, ’deltim’)

ans =

 0.0980
 2.1640
 2.2220

>> % Free resources associated with the temporary view
>> dbfree(dbtemp);
K. Lindquist 7/16/06

42
>>

dbget

As explained for the dbadd command, the underlying storage of database tables is as fixed-for-
mat ASCII rows. The dbget command can be used to retrieve an entire database row as a string
(in fact, it is much more general, allowing the retrieval of entire tables or just specific fields
depending on the value of the database pointer). Rather than trying to parse the output of dbget,
use dbgetv to find specific pieces of information in a table or database row.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db, ’origin’);
>> db.record=0;
>> dbget(db)

ans =

 40.0740 69.1640 155.1660 704371900.66886 1 -1 1992118 7 7 -1 715
48 - -999.0000 f 2.62 1 -999.00 -1 -999.00 -1 locsat:kyrghyz JSPC -
1 790466871.00000

>>

dbget_remark

As explained under dbadd_remark, dbget_remark eases the retrieval of comments in databases
with the css3.0 remark table.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> db.record = dbaddnull(db);
>> dbputv(db,’lat’,61.5922,’lon’,-149.130,’depth’,20,’time’,str2epoch(’now’))
>> dbadd_remark(db,’This earthquake occurred under Palmer, Alaska’)
>> dbget_remark(db)

ans =

This earthquake occurred under Palmer, Alaska

>>

dbgetv
K. Lindquist 7/16/06

43
The dbgetv command is one of the most frequently used commands in the Antelope program-
ming environment. With dbgetv one can get specific fields out of a database row. A unique char-
acteristic of the Matlab-interface dbgetv command is the ability to extract entire columns at once
out of a database table.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db, ’origin’);
>> db.record=0;
>> [lat,lon,auth] = dbgetv(db,’lat’,’lon’,’auth’)

lat =

 40.0740

lon =

 69.1640

auth =

JSPC

>>
>> db = dbsubset(db,’mb>6’);
>> dbgetv(db,’mb’)

ans =

 6.4200
 6.4000
 6.2000
 6.2000
 6.2300
 6.4000
 6.3100
 6.0200
 6.2800
 6.5000
 6.5700
 6.1100
 6.0500
 6.2100
 6.3000
 6.3000
K. Lindquist 7/16/06

44
 6.2700
 6.1400

>>

dbgroup

The dbgroup command takes a sorted view and groups the records into ‘bundles’, clustering
together all those records that have the same values for the group fields. For example, in the oper-
ation below we take the arrival table, sort it by station, and group arrivals together by station. This
allows us to make an easy count of the number of arrivals at each station, via the ‘count()’ func-
tion in dbeval. The input list of group fields should be a cell-array of strings, hence the squiggly
brackets in the dbgroup call below.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db, ‘arrival’);
>> db = dbsort(db, ‘sta’);
>> db = dbgroup(db, { ‘sta’ });
>> % Find the number of arrivals at each station:
>> for i=1:dbnrecs(db)
db.record=i-1;
sta = dbgetv(db,’sta’);
narr = dbeval(db, ‘count()’);
sprintf(‘%s %d\n’, sta, narr)
>> end

ans =

AAK 3

ans =

CHM 2

ans =

EKS2 1

ans =

KBK 2

ans =

KMI 1
K. Lindquist 7/16/06

45
ans =

TKM 1

ans =

USP 2

dbinvalid

The database-pointer is actually a structure of four integers. There is an ‘invalid’ value for all of
these which is occasionally useful for tests or as the input to some commands.

>> db = dbinvalid

db =

 database: -102
 table: -102
 field: -102
 record: -102

>>

dbjoin

dbjoin allows the user to construct composite views in a relational database. Information in each
table is cross-referenced according to its primary fields to construct a set of the corresponding,
joined rows.

>> db = dbopen(demodb_path,’r’);
>> dbarrival=dblookup_table(db,’arrival’);
>> dbwfdisc=dblookup_table(db,’wfdisc’);
>> db=dbjoin(dbarrival,dbwfdisc)

db =

 database: 0
 table: 34
 field: -501
 record: -501

>>
K. Lindquist 7/16/06

46
dbjoin_keys

The standard Datascope join operations between database tables are accomplished by inferring
the sensible join keys with which to combine the two tables. dbjoin_keys explains which fields
were used or will be used to perform a join.

>> db = dbopen(demodb_path,’r’);
>> dbarrival=dblookup_table(db,’arrival’);
>> dbwfdisc=dblookup_table(db,’wfdisc’);
>>
>> % Example 1:
>> dbjoin_keys(dbarrival,dbwfdisc)

ans =

 ’sta’
 ’time == time::endtime’

>>
>> % Example 2:
>> dbjoin_keys(db,’origin’,’assoc’)

ans =

 ’orid’

>>

dblist2subset

Normally, database views are created with commands such as dbsubset, dbsort, dbjoin, dbun-
join, etc., which perform operations on one or more views to create a new view. However, some-
times one encounters situations where one knows the exact row numbers of interest for an
existing view and wants to create a new view containing just those rows. For this purpose there is
the dblist2subset command. Given an array of numbers specifying the row numbers to include,
dblist2subset will create a new view. The example below shows this in use with the trload_css
command. Since the trload_css command ignores the actual record-number field of the input
database pointer, a preceding dblist2subset call can restrict the input view to just one or several
rows of interest (if several rows are desired, instead of just one as in the example below, the row
numbers should be put into a single Matlab vector which is then given to dblist2subset as its sec-
ond argument). The dblist2subset can also be called without a second argument, in which case
dblist2subset assumes the database pointer refers to a group (as created by the dbgroup com-
mand) and turns the group into a proper view of its own.

>> db = dbopen(demodb_path,’r’);
K. Lindquist 7/16/06

47
>> db=dblookup_table(db,’wfdisc’);

>> db.record=3;

>> format long
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’)

time =

 7.061397047000000e+08

endtime =

 7.061398015500000e+08

nsamp =

 1938

samprate =

 20

>> % The trload_css command by itself ignores the record number of the
>> % database pointer, loading everything it finds in the input table.
>> % the dblist2subset command below creates a subset view the consists solely
>> % of the record of interest, thus limiting the amount of data loaded by the
>> % command. Note that this strategy assumes all the data of interest
>> % exist in the row being pointed to, which may or may not defeat the strength
>> % of the trload_css command, depending on the application. At the very least
>> % one may wish to include all relevant wfdisc row numbers in the list fed
>> % to dblist2subset, in which case a simple dbsubset command might be less
>> % effort to design.
>>
>> db = dblist2subset(db, 3);

>> tr = trload_css(db,time,endtime);
>> tr.record = 0;
>> data = trextract_data(tr);
>>
>> % Do something interesting (or, in this case, boring) with the data:
>> mean(data)
K. Lindquist 7/16/06

48
ans =

 -6.830181208053691e+03

>> dbclose(db);
>> trdestroy(tr);

dblookup

The four-element dbpointer structure, used as a handle to reference different fields or sections of a
relational database, is rarely modified by hand. dblookup allows the four elements of the
dbpointer structure to be aimed based on human-readable names for the tables and fields. Addi-
tionally, several recognized constants such as ‘dbALL’ and ‘dbSCRATCH’ allow further control
of the parts of the database to which dblookup aims the database pointer.

>> db = dbopen(demodb_path,’r’);
>> dblookup(db,’’,’origin’,’’,’dbALL’)

ans =

 database: 0
 table: 10
 field: -501
 record: -501

>>

dblookup_table

One of the most common operations with dblookup is to aim the database pointer at a particular
table. dblookup_table is an easier-to-type shorthand for this operation.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db,’origin’)

db =

 database: 0
 table: 10
 field: -501
 record: -501

>>
K. Lindquist 7/16/06

49
dbmark

This command is the first stage of a two-part process to remove a row from a database table, as
explained under dbcrunch. For the impatient, see dbdelete.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> % Add four copies of the same quake, all at slightly different times:
>> db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’))
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>db.record=dbaddv(db,’lat’,61.5922,’lon’,-
149.130,’depth’,20,’time’,str2epoch(’now’));
>>
>> db.record=1;
>> dbmark(db)
>>

dbnextid

In several of the css3.0-style database tables, entries such as hypocentral solutions (“origin” table)
or seismic phase arrivals (“arrival” table) are identified with unique, integer id’s. The dbnextid
command allows the retrieval of the next unused value for any of these integer indices.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> dbnextid(db,’orid’)

ans =

 1

>>

dbnojoin

Similar to dbjoin, the dbnojoin command returns a view showing rows in the first table that have
no counterpart in the second.

>> db = dbopen(demodb_path,’r’);
>> dbarrival=dblookup_table(db,’arrival’);
>> dbwfdisc=dblookup_table(db,’wfdisc’);
K. Lindquist 7/16/06

50
>> db=dbnojoin(dbarrival,dbwfdisc)

db =

 database: 0
 table: 36
 field: -501
 record: -501

>>

dbnrecs

The dbnrecs command returns the number of records in a database table or view.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db,’origin’);
>> nrecs = dbnrecs(db)

nrecs =

 1351

>>

dbopen

The first step in using Datascope on a relational database is to create a ‘handle’, called a database
pointer, to the ASCII flat files which store the database contents. This step is performed by
dbopen. Here we have written a small routine to reliably provide the pathname of a sample data-
base for these examples.

>> dbexample_get_demodb_path

demodb_path =

/opt/antelope/4.2u/data/matlab/antelope/examples/demodb/demo

>> db = dbopen(demodb_path,’r’)

db =

 database: 0
 table: -501
 field: -501
K. Lindquist 7/16/06

51
 record: -501

>>

dbpf

Many programs require some form of parameter file to store information about run-time configu-
ration. The Antelope parameter-file utility provides a very powerful mechanism to handle such
input files, including boolean, string, and numeric values as well as tables or key-value arrays, all
of which can be nested. In the Antelope Toolbox for Matlab, interaction with a parameter file is
through a ‘handle’ called a dbpf object. See the Antelope documentation for more details on the
parameter file mechanism.

>> pf = dbpf(’dbloc2’)

pf =

 dbpf object: 1-by-1

>> % Now as a contrived example of the other methods of use,
>> % convert it to a string, then compile it into a new parameter-file object:
>> string_version = pf2string(pf);
>> % Create an empty parameter-file object:
>> newpf = dbpf

newpf =

 dbpf object: 1-by-1

>> % Compile the new string into the empty parameter-file object:
>> % (you can compile into parameter-file objects that aren’t empty as well)
>> newpf = dbpf(newpf, string_version)

newpf =

 dbpf object: 1-by-1

>>

dbprocess

Dbprocess provides a simplified interface for forming various views. When a sequence of stan-
dard database operations (such as subsets, joins, sorts, etc.) need to be performed all in a row, they
can be combined into a single block, passed as a list of statements to dbprocess.
K. Lindquist 7/16/06

52
>> db = dbopen(demodb_path,’r’);

>> db = dbprocess(db, { ’dbopen arrival’;
 ’dbsubset sta == "AAK"’;
 ’dbjoin assoc’ });

>> [iphase, delta] = dbgetv(db,’iphase’, ’timeres’)

iphase =

 ’P’
 ’S’

delta =

 -0.0500
 0.8600

>>

Detailed explanations of the valid statements available in dbprocess may be found in the unix
man-pages for the dbprocess command. For reference, a summary list is provided here:

 dbopen table
 dbjoin [-o] table [key key ..]
 dbgroup key [key ..]
 dbleftjoin [-o] table [key key ..]
 dbnojoin table [key key ..]
 dbselect expr [expr ...]
 dbseparate table
 dbsever table
 dbsort [-ru] key ..]
 dbsubset expression
 dbtheta table [expression ..]
 dbungroup

dbput

This function is similar to dbput, however it does not automatically add its own null row. Also, it
does not do any consistency checking to make sure the new row makes sense given the contents
of the rest of the table. Again, avoid working with entire rows at once unless necessary. Consider
using dbputv if possible.
K. Lindquist 7/16/06

53
>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> db.record = dbaddnull(db);
>> dbputv(db,’lat’,61.5922,’lon’,-149.130,’depth’,20,’time’,str2epoch(’now’))
>> record = dbget(db)

record =

 61.5922 -149.1300 20.0000 923760231.63253 -1 -1 -1 -1 -1 -1 -1 -1
- - -999.0000 - -999.00 -1 -999.00 -1 -999.00 -1 - - -1
923760231.66952

>>
>> db.record = dbaddnull(db);
>> dbput(db,record)
>>

dbputv

The dbputv command is used to put individual field values into a database row. This is an
extremely important command in the Datascope library. Here, we make a new row with the
dbaddnull command so we have somewhere to put our values.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’origin’);
>> db.record = dbaddnull(db);
>> dbputv(db,’lat’,61.5922,’lon’,-149.130,’depth’,20,’time’,str2epoch(’now’))
>>

dbquery

The dbquery command is used to request a wide variety of information about a database or one
of its component parts. One of the most common uses is to count the number of records in a a
table.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db,’origin’);
>> dbquery(db,’dbRECORD_COUNT’)

ans =

 1351
K. Lindquist 7/16/06

54
>>
>> dbquery(db,’dbTABLE_FIELDS’)

ans =

 ’lat’
 ’lon’
 ’depth’
 ’time’
 ’orid’
 ’evid’
 ’jdate’
 ’nass’
 ’ndef’
 ’ndp’
 ’grn’
 ’srn’
 ’etype’
 ’review’
 ’depdp’
 ’dtype’
 ’mb’
 ’mbid’
 ’ms’
 ’msid’
 ’ml’
 ’mlid’
 ’algorithm’
 ’auth’
 ’commid’
 ’lddate’

>>
>> dbquery(db,’dbDATABASE_NAME’)

ans =

/opt/antelope/4.2u/data/matlab/antelope/examples/demodb/demo

>>

dbread_view
K. Lindquist 7/16/06

55
dbread_view is a less common command, used to read a view out of a file (for example, out of
the file saved by dbsave_view). An example of that straightforward usage is shown in the script
dbexample_dbread_view.m. For the tutorial we will show a far more unconventional use just to
add interest. We will create a named-pipe with the unix mkfifo(1) command, then write to that
pipe by calling the command-line version of dbsubset [Note for the advanced that it’s necessary to
do that in the background when using the Matlab unix() command, since the pipe will not close
until the other end is read and flushed]. Then we get the database view out of the pipe and into
Matlab with the dbread_view command:

>> unix(’mkfifo /tmp/mypipe’);
>> unix([’dbsubset ’ demodb_path ’.origin "ms > 6.8" > /tmp/mypipe &’]);
>> db = dbread_view(’/tmp/mypipe’)

db =

 database: 3
 table: 45
 field: -501
 record: -501

>> dbgetv(db, ’ms’)

ans =

 7.1000
 7.5000
 6.9000
 7.0000

>>

dbresponse

The css3.0 schemas and related schemas reference instrument response information in separate
files. These response files allow poles-and-zeros format, frequency-amplitude-phase triplet for-
mat, FIR format, and more. The dbresponse object is a handle to one of these response files, from
which response information can be extracted.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’instrument’);
>> db.record=0;
>> file=dbfilename(db)

file =
K. Lindquist 7/16/06

56
/opt/antelope/4.2u/data/matlab/antelope/examples/demodb/response/sts2_vel_RT72A.1

>>
>> resp = dbresponse(file)

resp =

 dbresponse object: 1-by-1

>>

dbsave_view

dbsave_view takes a current view into a database and saves it as though it were a base table of the
main database. This is useful if a lot of processing was necessary to create the original view. Note
that because the Antelope Toolbox for Matlab does not currently support named views, the name
of the saved view will default to the name assigned by Datascope. However, once the database is
closed the file may be moved to a new name. Also note that saved views are binary files of
indexes. The dbe program should be used to view them. Views will become stale if any of the
component tables change. To make an example of this command, we will copy the necessary parts
of the demo database, make a joined view, and save it:

>> output_dbname = [‘/tmp/newdb_’ getenv(‘USER’)];
>> unix([’cp ’ demodb_path ’.arrival ’ output_dbname ’.arrival’]);
>> unix([’cp ’ demodb_path ’.wfdisc ’ output_dbname ’.wfdisc’]);
>> db = dbopen(output_dbname,’r’);

>> dbarrival=dblookup_table(db,’arrival’);
>> dbwfdisc=dblookup_table(db,’wfdisc’);
>> db=dbjoin(dbarrival,dbwfdisc);

>> dbsave_view(db);
>>

dbseparate

dbseparate extracts the rows from the specified base table that participate in a given view. For
example, we can start with a whole set of wfdisc records, construct a view that joins them ulti-
mately to hypocentral information, subset for a hypocenter of interest, and then extract the result-
ing wfdisc records which have matched:

>> db = dbopen(demodb_path,’r’);
>> db = dbprocess(db, { ‘dbopen wfdisc’; ...
 ‘dbjoin arrival’; ...
 ‘dbjoin assoc’; ...
K. Lindquist 7/16/06

57
 ‘dbjoin origin’; ...
 ‘dbsubset orid == 645’ });
>> db = dbseparate(db, ‘wfdisc’);

>> db.record=0;
>> dbextfile(db, ‘wfdisc’)

ans =

/opt/antelope/data/db/demo/wf/knetc/1992/138/210426/19921382155.15.CHM.BHZ

>>

For brevity, we have only printed one of the resulting file names from the records this retrieved.

dbsever

The dbsever command takes an existing view and removes an unwanted or no-longer needed
table from that view. The returned value is a view without any fields from the removed table. If
necessary, the resulting view is condensed to eliminate any duplicate rows.

>> db = dbopen(demodb_path,’r’);
>> dborigin=dblookup_table(db,’origin’);
>> dbstamag=dblookup_table(db,’stamag’);
>> db=dbjoin(dborigin, dbstamag);

>> % Get rid of the stamage values now that we know which orids have stamags:
>> db= dbsever(db, ‘stamag’)

db =

 database: 1
 table: 46
 field: -501
 record: -501

>> dbgetv(db, ‘orid’)

ans =

 645

>>
K. Lindquist 7/16/06

58
dbsort

This command takes any database view and returns a view sorted according to the specified
expression.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’origin’);
>> db=dbsubset(db,’mb>6.3’);
>> db=dbsort(db,’mb’);
>> dbgetv(db,’mb’)

ans =

 6.3100
 6.4000
 6.4000
 6.4200
 6.5000
 6.5700

>>

If one of the arguments to dbsort is ‘dbSORT_UNIQUE’, the view returned will have only one
representative for each unique value of the sort field(s). I.e. rows which have duplicate sort keys
will be eliminated. If one of the arguments is ‘dbSORT_REVERSE’, the sort will be performed in
reverse order.

dbsubset

This command, fairly self-explanatory, returns a database view containing only those rows from
the input view which match the specified expression.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’origin’);
>> db=dbsubset(db,’mb>6.3’);
>> dbgetv(db,’mb’)

ans =

 6.4200
 6.4000
 6.4000
 6.3100
 6.5000
 6.5700
K. Lindquist 7/16/06

59
>>

dbtheta

In the dbjoin command, specified above, the comparison fields (“join keys”) used to describe
which rows correspond were inferred. The dbtheta command allows you to perform the join with
full command over whether or not two rows should be associated together or not, based on the
supplied test expression.

>> db = dbopen(demodb_path,’r’);
>> dbassoc = dblookup_table(db,’assoc’);
>> dbwfdisc = dblookup_table(db,’wfdisc’);
>> db=dbtheta(dbassoc,dbwfdisc,’assoc.sta == wfdisc.sta’)

db =

 database: 0
 table: 45
 field: -501
 record: -504

>>

dbungroup

The dbungroup command is the inverse of the dbgroup command. It unpacks a bundle of rows
into a view containing the individual rows.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db, ‘arrival’);
>> db = dbsort(db, ‘sta’);
>> db = dbgroup(db, { ‘sta’ });

>> % Subset for one station:
>> db = dbsubset(db, ‘sta == “AAK”’);

>> db = dbungroup(db);

>> % Get the arriving phases detected at this station:
>> db = dblookup(db, ‘’, ‘’, ‘’, ‘dbALL’);
>> dbgetv(db, ‘iphase’)

ans =
K. Lindquist 7/16/06

60
 ‘S’
 ‘P’
 ‘del’

>>

dbunjoin

Once a view is created, many database operations can be performed on it which winnow out cer-
tain rows of each component table. The resulting view may be split into the component rows from
each participating table and written to a new database. This is accomplished with the dbunjoin
command.

>> db = dbopen(demodb_path,’r’);
>> dbarrival=dblookup_table(db,’arrival’);
>> dbwfdisc=dblookup_table(db,’wfdisc’);
>> db=dbjoin(dbarrival,dbwfdisc);
>> dbunjoin(db,’/tmp/newdb’);
>> !ls /tmp/newdb*
/tmp/newdb.arrival /tmp/newdb.wfdisc
>>

dbwrite_view

dbwrite_view writes a database view to a file. This can be used in a number of ways, for example
to pipe a view to an external command (such as dbe(1)) via a named pipe. First we will set up the
named pipe, and set up the Antelope dbe program (running in the background) waiting for input
from the pipe. Then we will create our customized view in Matlab. Finally, we will write our view
to the named pipe (which, like everything in unix, just looks like a file). At that point dbe will
receive its input

>> pipe_name = [’/tmp/mypipe_’ getenv(’USER’)];
>> unix([’mkfifo ’ pipe_name]);
>> unix([’cat ’ pipe_name ’ | dbe - &’]);

>> db = dbopen(demodb_path,’r’);
>> dbarrival=dblookup_table(db,’arrival’);
>> dbwfdisc=dblookup_table(db,’wfdisc’);
>> db=dbjoin(dbarrival,dbwfdisc);

>> dbwrite_view(db, pipe_name);
>>
K. Lindquist 7/16/06

61
This causes a dbe(1) window to appear, showing the view that was calculated in Matlab.

elog_alert

The elog_alert function sends a message of severity ‘alert’ to the Antelope elog facility.

>> elog_alert(‘This is an Antelope alert message’)
Matlab *alert*: This is an Antelope alert message

>>

elog_complain

The elog_complain function sends a message of severity ‘complain’ to the Antelope elog facility.

>> elog_complain(‘This is an Antelope complain message’)
Matlab: This is an Antelope complain message

>>

elog_debug

The elog_debug function sends a message of severity ‘debug’ to the Antelope elog facility.

>> elog_debug(‘This is an Antelope debug message’)
Matlab *debug*: This is an Antelope debug message

>>

elog_die

The elog_die function sends a message of severity ‘die’ to the Antelope elog facility, then kills the
Matlab interpreter.

>> elog_die(‘This is an Antelope die message’)

Matlab *fatal*: This is an Antelope die message

%

elog_flush
K. Lindquist 7/16/06

62
The elog_flush routine eliminates log messages after the specified message number (the second
argument), printing them if the deliver argument (the first argument) is set to a nonzero value.

>> elog_log(‘This is an Antelope log message’)
>> elog_flush(1, 0)
Matlab: This is an Antelope log message

>>

elog_init

The elog_init routine initializes the Antelope error-logging facility. This should be called prior to
using any of the elog* routines. If no arguments are specified, the error logger is initialized with
the program name set to ‘Matlab’. Otherwise, a single string may be specified, usually with the
script name, which will be used in all the output error messages as the name of the invoking pro-
gram.

>> elog_init()

or

>> elog_init(‘myscript’)

elog_log

The elog_log function sends a message of severity ‘log’ to the Antelope elog facility.

>> elog_log(‘This is an Antelope log message’)
>>

elog_mark

The elog_mark routine returns the count of messages currently held in the error log.

>> elog_log(‘This is an Antelope log message’)
>> n = elog_mark()

n =
 1

elog_notify

The elog_notify function sends a message of severity ‘notify’ to the Antelope elog facility.
K. Lindquist 7/16/06

63
>> elog_notify(‘This is an Antelope notify message’)
Matlab: This is an Antelope notify message

>>

elog_string

The elog_string function returns a string with the error log contents, starting with the specified
message number (message numbering starts at 0, so use 0 as the argument to retrieve all messages
currently in the message queue).

>> elog_log(‘This is an Antelope log message’)
>> logstring = elog_string(0)

logstring =

Matlab: This is an Antelope log message

>>

epoch2str

Most time handling in Antelope (not to mention Unix) is done in terms of Unix epoch seconds, or
seconds since 1970. The epoch2str command provides a highly flexible method for creating more
human-readable time strings from an epoch time.

>> now = str2epoch(’now’)

now =

 9.237062953704129e+08

>> epoch2str(now, ’%D %H:%M:%S %Z’)

ans =

 4/10/99 01:04:55 UTC

>> epoch2str(now, ’%A, %B %d %Y’)

ans =

Saturday, April 10 1999

>>
K. Lindquist 7/16/06

64
>> epoch2str(now, ’%G %l %p’)

ans =

1999-04-10 1 AM

>>

eval_response

This function allows a dbresponse object (ultimately, a file of instrument response information
stored as poles and zeroes or frequency-amplitude-phase triplets etc.) to be queried for the com-
plex response at certain frequency values.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’instrument’);
>> db.record=0;
>> file=dbfilename(db);
>> resp = dbresponse(file);
>> eval_response(resp,6.28)

ans =

 1.0008 - 0.0041i

>>
>> eval_response(resp,transpose([0.01 0.1 1 10])*6.28)

ans =

 0.2550 + 0.8025i
 0.9936 + 0.1116i
 1.0008 - 0.0041i
 0.0000 - 0.0000i

>>

free_response

Once the user is done with a dbresponse object, it must be freed with the free_response com-
mand.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’instrument’);
>> db.record=0;
>> file=dbfilename(db);
K. Lindquist 7/16/06

65
>> resp = dbresponse(file);
>> free_response(resp)
>>

getpid

Get the system process-id of the Matlab interpreter from which this was called:

>> mypid = getpid

mypid =

4764

>>

orbafter

This command allows the user to set the beginning time for reading from an Antelope real-time
ORB buffer. Note that all the orb examples below require a running orb, for which you have per-
mission to connect.

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>> fd = orbopen(’nordic’, ’r’);
>> [result,time, srcname, pktid] = orbget(fd);
>> pktid

pktid =

 2357

>> % Get the next packet with timestamp after the packet we just got:
>> % (note that there’s no a-priori requirement that packets arrive on the
>> % orb in time order)
>> orbafter(fd, time)

ans =

 497

>>
K. Lindquist 7/16/06

66
orbclose

This allows the user to close down an open connection to an Antelope ORB.

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>> fd = orbopen(’nordic’, ’r’);
>> orbclose(fd)
>>

orbget

The orbget command collects the specified packet from an Antelope ORB, unpacks it based on
its type, and returns it to the user. Currently the understood types are waveform, parameter-file
(you can put an entire parameter file on an ORB), and database-row. Other types of packets are
returned as byte vectors. Each packet on an orb has a timestamp and a source-name, which are
also returned.

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>>
>> % First we’ll get a waveform-data object from an orb:
>> fd = orbopen(’nordic’, ’r’);
>> orbreject(fd, ’/db/.*|/pf/.*’);
>> [result, time, srcname, pktid, type] = orbget(fd)

result =

 database: 16
 table: 5
 field: -501
 record: 0

time =

 9.4638e+08

srcname =

AT_MID_SHZ

pktid =

 724328
K. Lindquist 7/16/06

67
type =

waveform

>> result.record = 0;
>> plot(trextract_data(result));

>> trdestroy(result);
>> orbclose(fd);

>> % Now get a database-row object from an orb:
>> fd = orbopen(’megathrust’,’r’);
>> orbselect(fd,’/db/.*’);
>> orbseek(fd,’ORBOLDEST’);
>> result=orbget(fd)

result =

 database: 0
 table: 19
 field: -501
 record: -504

>> [lat,lon,mb]=dbgetv(result,’lat’,’lon’,’ml’)

lat =

 59.8962
K. Lindquist 7/16/06

68
lon =

 -152.0661

mb =

 1.8600

>> % Finally, get a parameter-file object from an orb:
>> orbselect(fd,’/pf/.*’);
>> orbseek(fd,’ORBOLDEST’);
>> result=orbget(fd)

result =

 dbpf object: 1-by-1

>> pf2string(result)

ans =

cmdstring "echo hi | mail kent"

>>

orbopen

The orbopen command allows you to establish a read or write connection to a running Antelope
ORB server anywhere on the internet (provided the orbserver maintainers have given you permis-
sion to connect to that orb). You may have multiple connections at once to the same ORB.

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>> fd = orbopen(’nordic’, ’r’)

fd =

 21

>>

orbping
K. Lindquist 7/16/06

69
This command is primarily useful to verify that an ORB connection is up and running. It has the
side benefit of telling you the version number of the orbserver.

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>> fd = orbopen(’nordic’, ’r’);
>> orbping(fd)

ans =

 6

>>

orbreap

This is one of the most common orb commands. Evaluated in a tight loop, it allows you to suc-
cessively receive packet after packet for the streams you’ve chosen. Each packet can then be pro-
cessed as necessary.

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>> fd = orbopen(’nordic’, ’r’);
>> for i = 1:3,
[result,time,srcname] = orbreap(fd);
srcname
end

srcname =

AK_MDM_SHZ

srcname =

AK_KTH_SHZ

srcname =

AK_MCK_SHZ

>>

orbreject
K. Lindquist 7/16/06

70
This command allows the user to reject certain packets from ever coming across a particular orb
connection. The specification is by means of regular-expression matching on the source-names of
the packets.

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>> fd = orbopen(’nordic’, ’r’);
>> % Reject all parameter-file packets, all database-row packets,
>> % and all waveform packets for the Alaska net whos station-names
>> % start with A,B, or C:
>> % (return the number of sources still available on the connection)
>> orbreject(fd, ’/db/.*|/pf/.*|AK_[A-C].*’)

ans =

 276

>>

orbseek

For a given read connection to an orbserver, the orbseek command allows the user to position the
reading point in the stream to a certain packet number or to a specified relative location in the
stream (newest packet, oldest packet, next packet, etc.).

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>> fd = orbopen(’nordic’, ’r’);
>> orbseek(fd, ’ORBOLDEST’)

ans =

 790548

>> orbseek(fd, ’ORBNEXT’)

ans =

 790549

>> orbseek(fd, ’ORBNEWEST’)

ans =

 321046
K. Lindquist 7/16/06

71
>> orbseek(fd, ’ORBPREV’)

ans =

 321045

>> orbseek(fd, ’ORBPREV’)

ans =

 321044

>> mypktid = orbtell(fd)

mypktid =

 321044

>> orbseek(fd, ’ORBPREV’)

ans =

 321043

>> orbseek(fd, mypktid)

ans =

 321044

>>

orbselect

Orbselect is a very useful command which allows the user to filter packets from an orb connec-
tion so that only those matching certain source-name criteria get through.

>> fd = orbopen(’nordic’, ’r’);
>> % Choose all components of station DIV (Divide, Alaska)
>> % Return the number of selected sources
>> orbselect(fd, ’AK_DIV_.*’)

ans =
K. Lindquist 7/16/06

72
 3

>>

orbtell

This command returns the packet-identification-number for the current packet on read connec-
tion to an orbserver.

>> % This presumes that you have connect permission to a running
>> % orb called ’nordic’ (you probably don’t...)
>> fd = orbopen(’nordic’, ’r’);
>> % Find the packet-id for the current packet:
>> orbtell(fd)

ans =

 377956

>>

parse_response

The parse_response command takes a dbresponse object and expands it into its component filter
stages and filter coefficients. The result is returned as a cell array. Each cell in the cell array con-
tains one stage of the filter, represented as a Matlab structure. The field names in the structure
vary according to the type of the filter, although all of the structures have a ‘type’ field listing the
type of the filter. For example, a filter stage of type ‘paz’ (poles and zeroes) will have vectors of
the poles and zeros for the filter stage. A filter stage of type ‘fap’ (frequency-amplitude-phase)
will have vectors of the frequency-amplitude-phase triplets.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’instrument’);
>> db.record=0;
>> file=dbfilename(db);
>> resp = dbresponse(file);
>> parsed = parse_response(resp)

parsed =

 [1x1 struct]
 [1x1 struct]
 [1x1 struct]
 [1x1 struct]
 [1x1 struct]
K. Lindquist 7/16/06

73
>> % Display the results:
>> celldisp(parsed)

parsed{1} =

 type: ‘paz’
 npoles: 2
 nzeros: 2
 normalization: 1
 frequency: 0
 poles: [2x1 double]
 pole_errors: [2x1 double]
 zeros: [2x1 double]
 zero_errors: [2x1 double]

parsed{2} =

 type: ‘paz’
 npoles: 6
 nzeros: 0
 normalization: 1.5020e+19
 frequency: 0
 poles: [6x1 double]
 pole_errors: [6x1 double]
 zeros: []
 zero_errors: []

parsed{3} =

 type: ‘fir’
 nnum: 99
 nden: 1
 srate: 1000
 dec_factor: 5
 seed_dec_offset: 0
 midpoint: -1
 num_coefs: [99x1 double]
 num_coef_errors: [99x1 double]
 den_coefs: 1
 den_coef_errors: 0
K. Lindquist 7/16/06

74

parsed{4} =

 type: ‘fir’
 nnum: 95
 nden: 1
 srate: 200
 dec_factor: 2
 seed_dec_offset: 0
 midpoint: -1
 num_coefs: [95x1 double]
 num_coef_errors: [95x1 double]
 den_coefs: 1
 den_coef_errors: 0

parsed{5} =

 type: ‘fir’
 nnum: 235
 nden: 1
 srate: 100
 dec_factor: 5
 seed_dec_offset: 0
 midpoint: -1
 num_coefs: [235x1 double]
 num_coef_errors: [235x1 double]
 den_coefs: 1
 den_coef_errors: 0

>> % Display one of the component vectors:
>> parsed{1}.poles

ans =

 -0.0355 + 0.0355i
 -0.0355 - 0.0355i

>>

parsepath
K. Lindquist 7/16/06

75
parsepath separates a pathname into its component parts. This is done entirely by text analysis of
the input string, without any regard to whether the files, directories, or whatever they are actually
exist. If the third output argument is specified, any suffix is separated from the basename of the
file. Otherwise the file basename is left intact with any suffix.

>> [dir, base] = parsepath(’/home/kent/testfile.txt’)

dir =

/home/kent

base =

testfile.txt

>> [dir, base, suffix] = parsepath(’/home/kent/testfile.txt’)

dir =

/home/kent

base =

testfile

suffix =

txt

>>

pf2string

An entire parameter file (being essentially an ASCII file) or subsection thereof may be converted
to a string.

>> pf=dbpf(’dbfixids’);
>> pf2string(pf)

ans =
K. Lindquist 7/16/06

76
css3.0 &Arr{
aliases &Arr{
magid mbid msid mlid
orid prefor
}
}
rt1.0 &Arr{
aliases &Arr{
magid mbid msid mlid
orid prefor
}
}

>>

pf2struct

The Matlab Antelope Toolbox allows an entire parameter file to be loaded into a Matlab struct. A
Matlab struct has strong similarity to the data storage in a parameter file: namely a flexible set of
key-value pairs. The ‘recursive’ option to pf2struct can be used to read a complex parameter file
all at once into an easy-to-use Matlab-style object. This command can be extremely useful in
making the entire contents of a parameter file available in one clean strike, rather than multiple
independent pfget calls. With pf2struct in ‘recursive’ mode, one call converts every parameter in
the parameter file into a like-named element of the returned structure. Parameter values that
appear to be numeric will be converted to numbers via the Matlab str2double function [note that
this is a change from earlier version of the Antelope Toolbox for Matlab]:

>> pf=dbpf(’dbloc2’);
>> pf2struct(pf)

ans =

 Define: [1x1 dbpf]
 Processes: [1x1 dbpf]
 Run: [1x1 dbpf]
 State: [1x1 dbpf]
 User: [1x1 dbpf]

>>
>> pf2struct(pf,’recursive’)

ans =

 Define: [1x1 struct]
 Processes: [1x1 struct]
K. Lindquist 7/16/06

77
 Run: [1x1 struct]
 State: [1x1 struct]
 User: [1x1 struct]

>>
>> ans.Define

ans =

 Results_dir: ’results’
 Temporary_db: ’trial’
 Work_dir: ’tmp’
 arrival_color: ’purple’
 arrival_info: ’arid sta time iphase deltim fm amp per auth’
 arrivals_height: 300
 arrivals_width: 800
 azimuth_font: ’-Adobe-Helvetica-Bold-O-Normal--*-120-*’
 azimuth_info: ’azimuth delaz’
 bad_residual_color: ’orange’
 button_row: 49
 dbpick_channel_options: [1x1 struct]
 dbpick_options_order: ’Vertical Horizontal All Selected’
dbpick_revert_to_default: ’yes’
 fixedwidth_font: ’-Adobe-Courier-Bold-R-Normal--*-120-*’
 ignored_color: ’gray60’
 max_event_delta: 5
max_event_time_difference: 25
 maxcol: 25
 maxrow: 50
 ok_residual_color: ’DodgerBlue’
 origin_color: ’magenta’
 origin_info: [1x69 char]
 origins_height: 150
 origins_width: 800
 partial_color: ’cyan’
 plain_font: ’-Adobe-Helvetica-Bold-R-Normal--*-120-*’
 site_info: ’staname {lat . "," . lon} gregion(lat,lon)’
 slowness_info: ’slow delslo’
 station_color: ’gray’
 time_font: ’-Adobe-Courier-Bold-R-Normal--*-120-*’
 used_color: ’black’

>>
K. Lindquist 7/16/06

78
pffiles

The Antelope parameter-file mechanism allows the parameters to be extracted from any of the
matching parameter files along an entire search path (specified in the PFPATH environment vari-
able). The pffiles command shows which pathnames actually contributed to a given paramter-file-
object’s contents. The ‘all’ option shows all the files that were tested for existence and possible
contribution.

>> pffiles(’rtexec’)

ans =

 ’/opt/antelope/4.2u/data/pf/rtexec.pf’

>> pffiles(’rtexec’,’all’)

ans =

 ’/opt/antelope/4.2u/data/maps/site/rtexec.pf’
 ’/opt/antelope/4.2u/data/pf/rtexec.pf’
 ’/opt/antelope/4.2u/data/pf/site/rtexec.pf’
 ’/home/kent/data/pf/rtexec.pf’
 ’./rtexec.pf’

>>

pffree

This frees the resources used by a dbpf object when it is no longer needed.
>> pf = dbpf(’dbloc2’);
>> pffree(pf)
>>

pfget

The pfget command retrieves the specified parameter from the dbpf object into an appropriate
format. Parameter values that appear to be numeric will be converted to numbers via the Matlab
str2double command [note that this is a change from earlier versions of the Antelope Toolbox for
Matlab]:

>> pf = dbpf(’rtexec’);
>> pfget(pf, ’Database’)

ans =
K. Lindquist 7/16/06

79
rtsys/rtsys

>> pfget(pf, ‘Failure_threshold’)

ans =

 300
>>

pfget_arr

This retrieves an associative array from a parameter-file object.

>> pf = dbpf(’rtexec’);
>> pfget_arr(pf,’Limit’)

ans =

 dbpf object: 1-by-1

>>
>> pfget_arr(pf,’Limit’,’recursive’)

ans =

 coredumpsize: ’unlimited’
 cputime: ’unlimited’
 datasize: ’unlimited’
 descriptors: ’unlimited’
 filesize: ’unlimited’
 stacksize: ’unlimited’
 vmemoryuse: ’unlimited’

>>

pfget_boolean

This retrieves a boolean value from a parameter-file object, translating strings such as ‘yes’ or
‘false’ into numeric values.

>> pf=dbpf(’dbloc2’)

pf =
K. Lindquist 7/16/06

80
 dbpf object: 1-by-1

>>
>> subpf=pfget(pf,’State’)

subpf =

 dbpf object: 1-by-1

>>
>> pfget_boolean(subpf,’auto_save’)

ans =

 -1

>>
>> pfget_boolean(subpf,’auto_associate’)

ans =

 0

>>

pfget_num

This command retrieves a numeric value from a parameter file (the numeric conversion is based
on the Matlab str2double command):

>> pf = dbpf(’rtexec’);
>> pfget_num(pf, ’Time_to_die’)

ans =

 20

>>

pfget_string

This command retrieves a string value from a parameter file.

>> pf = dbpf(’rtexec’);
>> pfget_string(pf, ’Database’)
K. Lindquist 7/16/06

81
ans =

rtsys/rtsys

>>

pfget_tbl

This command retrieves a table of values from a parameter file.

>> pf = dbpf(’rtexec’);
>> pfget_tbl(pf, ’Buttons’)

ans =

 ’top xterm -geom 80x25 -e top’
 ’clients xterm -geom 132x25 -e orbstat -c localhost 5’
 ’sources xterm -geom 132x60 -e orbstat -s localhost 5’
 ’rtd orbmonrtd localhost’
 ’dbevents dbevents archive/nw’
 ’qtmon qtmon localhost localhost localhost’

>>

pfkeys

This command extracts the key names for the key-value pairs in a parameter file.

>> pf = dbpf(’rtexec’);
>> pfkeys(pf)

ans =

 ’ANTELOPE’
 ’Buttons’
 ’Crontab’
 ’Database’
 ’Env’
 ’Limit’
 ’Minimum_period_between_starts’
 ’Network_database’
 ’Parameter_files’
 ’Processes’
 ’ROOT’
K. Lindquist 7/16/06

82
 ’Run’
 ’Shutdown_order’
 ’Shutdown_tasks’
 ’Start_period’
 ’Startup_tasks’
 ’Time_to_die’
 ’Use_UTC’
 ’disks’
 ’orbname’
 ’orbtasks’

>>

pfname

This command returns the parameter-file name from which a parameter-file object was created.

>> pf = dbpf(’rtexec’);
>> pfname(pf)

ans =

rtexec

>>

pfput_boolean

This function puts a value into a parameter file as a boolean.

>> pf = dbpf;
>> pfput_boolean(pf, ’myboolean’, ’True’)

>> pf2string(pf)

ans =

myboolean True

>>

pfput
K. Lindquist 7/16/06

83
The pfput command is a very general routine to put strings, numbers, cellarrays (as tables), or
structures (as associative arrays) into a parameter-file object.

>> pf = dbpf;
>>
>> pfput(pf, ’mydouble’, 3.14)
>> pfput(pf, ’myint’, 24)
>> pfput(pf, ’mystring’, ’test string’)
>>
>> z.a = 21;
>> z.b = ’hello’;
>> z.c = ’45.6’;
>> pfput(pf, ’myarray’, z)
>>
>> pfput(pf, ’mytable’, {’hello’ ’yes’ ’no’ ’goodbye’})
>>
>>
>> pf2string(pf)

ans =

myarray &Arr{
a 21
b hello
c 45.6
}
mydouble 3.14
myint 24
mystring test string
mytable &Tbl{
hello
yes
no
goodbye
}

>>

pfresolve

This is an alternative interface to the parameter-file objects with a naming convention that reflects
any nesting in the parameter-file components (tables and hashes). For further detail see the Datas-
cope man pages.

>> pf = dbpf(’rtexec’);
K. Lindquist 7/16/06

84
>> pfresolve(pf,’Limit{filesize}’)

ans =

unlimited

>>

pftype

Only top-level parameter-file objects are of file type. Subsidiary key-value structures (arrays)
inside a parameter file will have dbpf objects of type PFARR.

>> pf = dbpf(’rtexec’);
>> pftype(pf)

ans =

PFFILE

>>

pfupdate

This command allows your program to stay current with a parameter file if outside forces are
changing it while your program is running.

>> % Create a parameter file and put one value in it
>> unix(’echo myint 13 > /tmp/myfile.pf’);

>> % Open the parameter file and extract the parameter:
>> pf = dbpf(’/tmp/myfile.pf’);
>> pfget_num(pf, ’myint’)

ans =

 13

>> % Now change the parameter file from outside the Matlab context:
>> unix(’echo myint 25 >! /tmp/myfile.pf’);

>> % a retrieval of the parameter returns the previously cached value:
>> pfget_num(pf, ’myint’)

ans =
K. Lindquist 7/16/06

85
 13

>> % Updating the parameter-file object refreshes the cached values:
>> [pf, modified] = pfupdate(pf)

pf =

 dbpf object: 1-by-1

modified =

 1

>> % Now the retrieved parameter reflects the changed file:
>> pfget_num(pf, ’myint’)

ans =

 25

>>

pfwrite

A dbpf object, possibly modified, may be written out to the specified filename.

>> pf = dbpf(’rtexec’);
>> pfwrite(pf,’/tmp/rtexec_copy.pf’)
>>

str2epoch

This utility is a very powerful and flexible parsing utility to turn a human-readable time string into
an epoch time.

>> format long
>> str2epoch(’now’)

ans =

 9.237016155097741e+08

>> str2epoch(’3/17/99 15:24:16.5’)
K. Lindquist 7/16/06

86
ans =

 9.216842565000000e+08

>>
>> str2epoch(’January 27, 1973 4:00 pm’)

ans =

 96998400

>>

strdate

This utility takes a Unix epoch time and returns a stock day format.

>> strdate(96998400)

ans =

 1/27/1973

>>

strtdelta

This utility turns the input number of seconds into a reasonably-formatted value for a time inter-
val.

>> strtdelta(7200)

ans =

 2:00 hours

>> strtdelta(3*86400+15*3600)

ans =

 3 days 15.0 hours

>> strtdelta(912343243)

ans =
K. Lindquist 7/16/06

87
 28 years 339 days

>>

strtime

This function takes a Unix epoch time and returns a stock-format time and day string.

>> strtime(96998400)

ans =

 1/27/1973 16:00:00.000

>>

strydtime

This function is the same as the strtime function but includes as well the day number of the year.

>> strydtime(96998400)

ans =

 1/27/1973 (027) 16:00:00.000

>>

tr_endtime

This is a safe macro to reliably construct an endtime from a starting time, sample rate, and number
of samples. All other useful permutations of this routine exist as well (below).

>> time, endtime, nsamp, samprate

time =

 7.061397152000000e+08

endtime =

 7.061398415000000e+08
K. Lindquist 7/16/06

88
nsamp =

 2527

samprate =

 20

>>
>> tr_endtime(time,samprate,nsamp)

ans =

 7.061398415000000e+08

>>

tr_nsamp

>> tr_nsamp(time,samprate,endtime)

ans =

 2527

>>

tr_samp2time

>> tr_samp2time(time,samprate,1000)

ans =

 7.061397651500001e+08

>>

tr_samprate

>> tr_samprate(time,nsamp,endtime)
K. Lindquist 7/16/06

89
ans =

 20.00000000755087

>>

tr_time2samp

>> tr_time2samp(time,samprate,7.061397651500001e+08)

ans =

 1000

>>

tr2struct

tr2struct is most useful for creating a standalone structure of waveform data and its vital statis-
tics. This structure can be saved for export to a Matlab user who wants waveform data but does
not have the Antelope toolbox. This utility is implemented as a .m function rather than a mex file,
thus users may modify it easily to change its behavior. The input is a trace object containing the
waveform data to package for export.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> dbsite=dblookup_table(db,’site’);
>> db=dbjoin(db, dbsite);

>> % For now just use the time window of the first row to decide what to get:
>> db.record=0;
>> [time,endtime]=dbgetv(db,’time’,’endtime’);

>> tr = trload_css(db, time, endtime);

>> s = tr2struct(tr);

>> % Save the structure to a file to send elsewhere:
>> save ‘/tmp/dbexample_data.mat’ s

>> trdestroy(tr); % Don’t forget to clean up
K. Lindquist 7/16/06

90
trapply_calib

This function applies the calibration constant to waveform data contained in the trace object.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db.record=0;
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’);
>> tr = trload_css(db,time,endtime);
>> trapply_calib(tr)
>> % do something interesting with the data, most likely starting with trextract_data
>> trdestroy(tr); % Don’t forget to clean up

trdestroy

This routine frees all resources associated with a trace-object. This is a critical command for users
handling waveform data loaded from a database, especially if they are doing so in large quantities.
The trace-library commands in the Antelope Toolbox for Matlab are actually links to the underly-
ing C routines in the Antelope tr library. When one of the trace-library data-access methods (such
as trload_css or trload_cssgrp) is called to load data from a database into a trace-object, an
actual copy is made from the database (i.e. the disk files) into RAM memory allocated by the
Antelope trace-library. This memory is not under the control of the Matlab interpreter--it can be
neither freed nor accessed directly by default Matlab commands. Normally the user will at some
point call a command like trextract_data to make a third, useful copy of the trace data (the first
copy is on disk and the second in memory controlled by the trace library), pulling the data into
the Matlab workspace. This third copy is fully under the control of Matlab and the user can treat it
just like any other Matlab variable. However, the ‘middle’ copy of the waveform data, the one in
the RAM memory allocated by the trace library, must be freed ‘by hand’ after the user is done
with it. This step is accomplished with the trdestroy command [Note: it is also possible to use the
trfree command to free this data, however in general the trdestroy command is preferred. trfree
surgically frees parts of the memory allocated in the trace object, whereas trdestroy cleanly and
completely destroys the whole thing. The latter is preferable because of its robustness and sim-
plicity; it is much less prone to programming mistakes and oversights].

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db.record=0;
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’);
>> tr = trload_css(db,time,endtime);
>> % do something interesting with the data, most likely starting with trextract_data
>> trdestroy(tr) % Don’t forget to clean up
>>
K. Lindquist 7/16/06

91
trextract_data

A trace-object is just a database pointer, pointing to an open database in the Trace4.0 schema. The
“trace” table of this database has a field called “data”, which contains the address of some wave-
form data in memory. The trextract_data command gets this address and loads the data con-
tained into a Matlab vector. A further description of the general model may be found under the
section for the trload_css command. The trextract_data command is a critical part of waveform-
data access in the Antelope Toolbox for Matlab: it is the access method for getting a Matlab
matrix of waveform data out of a trace object and into a Matlab variable.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db.record=0;
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’);
>> tr = trload_css(db,time,endtime);
>> tr.record=0;
>> data=trextract_data(tr);
>> whos data
 Name Size Bytes Class

 data 2150x1 17200 double array

Grand total is 2150 elements using 17200 bytes

>> plot(data)

>> trdestroy(tr); % Don’t forget to clean up
K. Lindquist 7/16/06

92
>>

trfilter

trfilter performs time-domain filtering on all of the traces in the input trace-object. The filter is
specified in a filter_string argument, as described by the Unix man-page trfilter(3). For example,
to apply a Butterworth Band-pass filter from 1 to 5 Hz with eight poles, the filter_string would be
“BW 1 4 5 4”. For full details on filter_string options, please see the referenced man page. The
data arrays are filtered in place so that original sample values are replaced with the new filtered
values (note, of course, that this affects only the data in memory, not the data on disk).

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db.record=0;
>> format long
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’);
>> db = dblist2subset(db, 0);
>> tr = trload_css(db,time,endtime);

>> tr.record = 0;
>> subplot(2, 1, 1);
>> plot(trextract_data(tr));
>> ylabel(‘raw’);

>> trfilter(tr, ‘BW 1 4 5 4’);
>> subplot(2, 1, 2);
>> plot(trextract_data(tr));
>> ylabel(‘filtered’);
K. Lindquist 7/16/06

93
>> trdestroy(tr);

trfree

The trfree command is a way to free resources for part of a trace-object structure. Please strongly
consider using trdestroy instead of trfree. The trfree command is intended for the experienced
programmer who is thoroughly familiar with the underlying Antelope C-callable trace-library and
its concepts. The trfree command will free the memory resources associated with exactly the part
(and only the part) of the trace-object to which a given input pointer points. Because of this, while
highly involved data operations may be constructed with trfree, the general user will be much
more likely to avoid pitfalls with the robust, straightforward, and clean trdestroy command.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db.record=0;
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’);
>> tr = trload_css(db,time,endtime);
>> % do something interesting with the data, most likely starting with trextract_data

>> trfree(tr)
>>

trgetwf
K. Lindquist 7/16/06

94
This command is one of several methods to extract waveform data from a database. It is older and
simpler than many of the other tr routines. Instead of returning a trace-object, it returns simply a
Matlab vector of waveform data from the single database row specified by the input pointer. It has
the disadvantage that the output is not conducive to splicing, there is no provision to limit the
returned segment to a given time window, and it cannot handle waveform segments that span mul-
tiple wfdisc rows. The advantage is in the relative simplicity. Unlike the other trace-library access
routines such as trload_css and trload_cssgrp, there is no need to call trdestroy after calling this
routine.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db.record=0;
>> [data,nsamp,t0,t1]=trgetwf(db);
>> whos data
 Name Size Bytes Class

 data 2527x1 20216 double array

Grand total is 2527 elements using 20216 bytes

>> plot(data)

trinsert_data

This is the converse of the trextract_data command, described above.

>> tr=trnew;
K. Lindquist 7/16/06

95
>> tr=dblookup_table(tr,’trace’);
>>
>> % Construct a fake waveform:
>> data=sin([0:999]);
>> nsamp=1000;
>> sta=’SINE’;
>> chan=’BHZ’;
>> time=str2epoch(’now’);
>> samprate=20;
>> endtime=tr_endtime(time,samprate,nsamp);
>>
>> % Put the waveform into the trace-object:
>> tr.record=dbaddnull(tr);
>> dbputv(tr,’time’,time,’samprate’,samprate,’endtime’,endtime,’sta’,sta,’chan’,chan);
>> trinsert_data(tr,data)
>> % do something interesting with the data
>> trdestroy(tr); % Don’t forget to clean up

trload_css

The trload_css command loads the specified time range of data from a database pointer into a
trace object. Note that the record number of the input database pointer is ignored by this routine:
all data that appears in the input table matching the specified time range is loaded. To prevent
more data being loaded than one desires, one should precede the trload_css call with appropriate
calls to dbsubset to make sure only the desired data are read from the database. A trace object is
just another Datascope database pointer, although it is in a different database schema (Trace4.0)
than most on-disk waveform databases (usually css3.0 or rt1.0). Because the trace-object is really
just another database pointer, many of the standard database routines will work on it, such as
dbgetv, dbsort, dbsubset etc. By convention, database pointers that point to trace objects have
often been given variable names like tr instead of db. This convention is of course very informal,
since the name of a variable is completely arbitrary and can be chosen to suit the whims of the
programmer. However, the common usage does help programmers write code that is easier to
understand and maintain. There are a couple main differences between a database pointer that
points to a trace object and a database pointer that points to a set of waveforms on disk. One of
these differences is the table names. In css3.0 and rt1.0 database schemas, waveforms on disk are
described by a database table called wfdisc. In the Trace4.0 database schema, waveforms are
described by a database table called trace. The goal of the Trace4.0 schema is to provide a way to
describe waveforms in physical memory (RAM, Random Access Memory) instead of waveforms
on disk. Thus the second main difference is that whereas a wfdisc table has fields dir and dfile to
point to a block of waveform data on disk, the trace table has a field called data that points to a
block of waveform data in random-access memory. The trload_css command is designed to take
a database pointer that points to a wfdisc table of waveforms on disk, and load both the raw data
and the metadata (descriptive info such as station and channel names, times, number of samples
etc) into random-access memory and into a descriptive trace table. Thus, the data field of the
K. Lindquist 7/16/06

96
trace table holds the address of a block of data in memory. Since the waveform data is loaded by
trload_css into memory controlled by the Antelope trace-library rather than Matlab itself,
trload_css is only the first of two steps to get data from a waveform database on disk into matri-
ces of useful time series data in Matlab. Specifically, the time-series loaded into the data address
by trload_css must be extracted into the Matlab workspace. That step is accomplished with the
command trextract_data, described separately. As a final note, the matrix returned by
trextract_data is fully in the Matlab workspace and obeys its memory handling rules completely-
-it can be copied, cleared etc. like any other Matlab variable. However, a critical point is that the
memory allocated by trload_css is actually under the control of the Antelope trace library, not
under the control of Matlab. Thus when one is finished with a trace object, one should call trde-
stroy on the trace-object to free this underlying memory.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db.record=0;
>> format long
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’)

time =

 7.061397152000000e+08

endtime =

 7.061398415000000e+08

nsamp =

 2527

samprate =

 20

>> tr = trload_css(db,time,endtime)

tr =

 database: 1
 table: 5
 field: -501
 record: -501
K. Lindquist 7/16/06

97
>>
>> % do something interesting with the data, most likely starting with trextract_data
>> trdestroy(tr); % Don’t forget to clean up

trload_cssgrp

This command is similar to trload_css described above. The user should be forewarned that this
routine is an exposure of a C library (libtr) routine which was designed more for the core pro-
grammer than the general user. Thus, there are some characteristics that must be known and
accounted for. Most importantly, it is critical that the input database view is sorted by ‘sta’, then
‘chan’, then ‘time’. This may be done with the dbsort command in the example below. Also, the
trload_cssgrp loads a copy of all returned data into memory allocated inside the trace-library
itself. In order to free this memory, the user is required to call the trdestroy command on the
trace-object pointer. This is true regardless of whether or not the data have been extracted into the
Matlab workspace by the trextract_data command (those data loaded into the Matlab work-
space, of course, follow the standard patterns of memory-handling for Matlab data--they can be
copied or cleared as necessary by Matlab commands without further concern). While the trde-
stroy command may be omitted for small programs and small data requests, it is good program-
ming practice to include it consistently. Otherwise attempts to run any developed code on large
data sets may create a situation that swamps the machine (uses up all available memory and swap
space).

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db= dbsort(db, ’sta’, ’chan’, ’time’); % REQUIRED
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’);
>> tr = trload_cssgrp(db,time(1),endtime(1))

tr =

 database: 8
 table: 5
 field: -501
 record: -501

>> tr.record=0;
>> data=trextract_data(tr);
>> plot(data)
>> trdestroy(tr); % Don’t forget to clean up

trnew

The trnew command creates a new, empty trace-object database.

>> tr=trnew
K. Lindquist 7/16/06

98
tr =

 database: 0
 table: -501
 field: -501
 record: -501

>> dbquery(tr,’dbDATABASE_NAME’)

ans =

/tmp/trdb0ewpxx

>> dbquery(tr,’dbSCHEMA_NAME’)

ans =

Trace4.0

>>
>> trdestroy(tr) % Don’t forget to clean up

trputwf

This is a deprecated interface for putting waveform data into a database. Please switch to
trsave_wf.

>> db=dbopen(’/tmp/newdb’,’r+’);
>> db = dblookup_table(db, ’wfdisc’);
>>
>> % Construct a fake waveform:
>> data = (0:999);
>> data = data * 32 * pi / 1000;
>> data = sin(data);
>>
>> % Construct some variables describing the waveform:
>> nsamp = 1000;
>> samprate = 20;
>> foff = 0;
>> datatype=’t4’;
>> dir=’/tmp’;
>> dfile=’demo_sinewave’;
>> sta=’SINE’;
>> chan=’BHZ’;
K. Lindquist 7/16/06

99
>> time = str2epoch(’5/12/97 13:57:18.143’);
>> endtime = tr_endtime(time, samprate, nsamp);
>>
>> % Enter the description of the waveform data into the wfdisc table:
>> db.record = dbaddv(db,’sta’,sta,’chan’,chan, ’nsamp’, nsamp, ...
’samprate’, samprate, ’time’, time, ’endtime’,endtime, ...
’foff’,foff, ’datatype’,datatype, ’dir’,dir,’dfile’, dfile);
>>
>> % Now put the actual data samples into the file, in the specified format:
>> trputwf(db, data);
>> % As a test, get the data back out:
>> [newdata, nsamp, t0, t1] = trgetwf(db, time-1, endtime+1);
>>
>> plot(newdata);
>>

trrotate

trrotate rotates three-component traces of waveform data by the specified angles phi and theta,
translating the input ‘E’, ‘N’, and ‘Z’ components (X1, X2, X3) into the three-component, right-
handed coordinate system specified by newchans. phi is the azimuthal rotation around the X3 axis
in degrees (positive clockwise looking towards negative X3). theta is the rotation in the X1-X3
plane about the X2 axis (positive clockwise looking towards negative X2). newchans is a three-
element cell-array of strings, such as {‘BHR’,’BHT’,’BHZ’}, specifying the channel-names of
the rotated E,N, and Z components. The trrotate command is a direct link to the underlying C-
library trrotate(3) command, including the return codes of that routine. There are a number of
K. Lindquist 7/16/06

100
important caveats in using this routine. Therefore, if problems are encountered, one should con-
sult the Unix man page for trrotate(3). Among these concerns is the necessity to call
trapply_calib before calling trrotate on real data. Also see the routine trrotate_to_standard.

>> db = dbopen(demodb_path,’r’);
>> db = dblookup_table(db,’origin’);
>> db = dbsubset(db, ‘orid == 645’); % Pick an orid known to have waveforms

>> dbt = dblookup_table(db,’site’);
>> db = dbjoin(db, dbt);

>> db = dbsubset(db, ‘sta == “AAK”’); % Pick a station known to have an arrival

>> db.record = 0;
>> time = dbeval(db, ‘parrival() - 10’);
>> endtime = dbeval(db, ‘parrival() + 10’);
>> phi = dbeval(db, ‘azimuth(site.lat, site.lon, origin.lat, origin.lon)’)

phi =

 2.386163334024687e+02

>> db = dblookup_table(db,’wfdisc’);
>> db = dbsubset(db, ‘sta == “AAK”’);

>> tr = trload_css(db,time,endtime);
>> trapply_calib(tr); % Probably necessary!!

>> trfilter(tr, ‘BW 1 4 5 4’); % See online example for a bug workaround

>> trrotate(tr, -1 * phi, 0, { ‘BHR’, ‘BHT’, ‘BHZ’ });

>> nrecs = dbnrecs(tr);
>> for i=1:nrecs,
subplot(nrecs,1,i)
tr.record=i-1;
data=trextract_data(tr);
plot(data)
ylabel(dbgetv(tr,’chan’));
>> end
>> subplot(nrecs,1,1)
>> title(‘original and rotated traces for station AAK’);
K. Lindquist 7/16/06

101
>> trdestroy(tr);

trrotate_to_standard

trrotate_to_standard takes all traces pointed to by a trace-object and rotates them to a standard
coordinate system, i.e. standard geographical coordinates comonly used in seismology where the
first coordinate (X1) is positive to the East, the second (X2) is positive North, and the third (X3) is
positive upward. newchans is a three-element cell-array of strings, such as
{‘BHE’,’BHN’,’BHZ’}, specifying the channel-names of the newly rotated components. The
trrotate_to_standard command is a direct link to the underlying C-library rotate_to_standard(3)
command, including the return codes of that routine. There are a number of important caveats in
using this routine. Therefore, if problems are encountered, one should consult the Unix man page
for rotate_to_standard(3). Among these concerns is the necessity to call trapply_calib before
calling trrotate_to_standard on real data. Also see the command trrotate.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db.record=0;
>> format long
>> [time,endtime,nsamp,samprate]=dbgetv(db,’time’,’endtime’,’nsamp’,’samprate’);
>> tr = trload_css(db,time,endtime);

>> trapply_calib(tr);

>> nrecs_before_rotate = dbnrecs(tr);

>> % Rotate all data to standard coordinates. This command actually
K. Lindquist 7/16/06

102
>> % does nothing in this case since the sample database is already
>> % aligned with E,N,Z...
>> trrotate_to_standard(tr, {‘BHE’,’BHN’,’BHZ’});

>> nrecs_after_rotate = dbnrecs(tr);

>> % Since we probably only care about the newly rotated components,
>> % subset to ignore the rest:
>> tr = dblist2subset(tr, nrecs_before_rotate:nrecs_after_rotate-1);
>> % Do something interesting with the data....
>> trdestroy(tr); % Don’t forget to clean up

trsave_wf

This command is the generic interface to put waveform database from a trace object into a data-
base. For details see the Datascope man page on trsave_wf.

>> tr=trnew;
>> tr=dblookup_table(tr,’trace’);
>>
>> % Construct a fake waveform:
>> amp = 10000;
>> data = amp * sin([0:999]);
>> nsamp=1000;
>> sta=’SINE’;
>> chan=’BHZ’;
>> time=str2epoch(’now’);
>> samprate=20;
>> endtime=tr_endtime(time,samprate,nsamp);
>>
>> % Put the waveform into the trace-object:
>> tr.record=dbaddv(tr, ’net’, ’AK’, ’sta’, ’SINE’, ’chan’, ’BHZ’, ’nsamp’, ...
>> ’samprate’, samprate, ’time’, time, ’endtime’, endtime);
>> trinsert_data(tr,data)
>>
>> % Save the trace data in a new database, with the underlying file in miniseed format:
>> db=dbopen(’/tmp/newdb’,’r+’);
>> db=dblookup_table(db,’wfdisc’);
>> trsave_wf(tr,db,’sd’,’’)
>> trdestroy(tr) % Don’t forget to clean up

trsplice
K. Lindquist 7/16/06

103
This routine attempts to splice together as many data segments as possible that are contained in
the input trace object. The second argument to trsplice is a tolerance value: neighboring traces
must be within this many samples (0.5 samples in the example below) to be considered contigu-
ous and therefore spliceable.

>> db = dbopen(demodb_path,’r’);
>> db=dblookup_table(db,’wfdisc’);
>> db=dbsubset(db,’sta == "CHM" && chan == "BHZ"’);
>> db.record=0;
>> [time,endtime,samprate,nsamp]=dbgetv(db,’time’,’endtime’,’samprate’,’nsamp’)

time =

 7.0614e+08

endtime =

 7.0614e+08

samprate =

 20

nsamp =

 2527

>>
>> tr=trload_css(db,time,time+10);
>> tr=trload_css(db,time+10,time+20,tr);
>> dbquery(tr,’dbRECORD_COUNT’)

ans =

 2

>>
>> strtime(dbgetv(tr,’time’))

ans =

 ’ 5/17/1992 21:55:15.200’
 ’ 5/17/1992 21:55:25.200’
K. Lindquist 7/16/06

104
>> strtime(dbgetv(tr,’endtime’))

ans =

 ’ 5/17/1992 21:55:25.150’
 ’ 5/17/1992 21:55:35.150’

>>
>> trsplice(tr,0.5)
>> dbquery(tr,’dbRECORD_COUNT’)

ans =

 1

>> strtime(dbgetv(tr,’time’))

ans =

 5/17/1992 21:55:15.200

>> strtime(dbgetv(tr,’endtime’))

ans =

 5/17/1992 21:55:35.150

>>
>> % do something interesting with the spliced data, most likely starting with trextract_data
>> trdestroy(tr) % Don’t forget to clean up

trwfname

The trwfname command helps generate file and pathnames for external files.When given a data-
base row filled with information on an external file, and with dir and dfile fields that need to be
filled in, trwfname will construct appropriate dir and dfile values, add them to the database row,
create the external directories for the path if necessary, and return the resulting path. If no pattern
is specified, trwfname uses a default pattern of information taken from the sta, chan, and time
fields of the input row. Optionally, one can specify a different pattern for the filename and path,
using the ‘%’ escape codes from epoch2str and ‘%{field}’ tokens to refer to fields in the database
row. For more detail, see the Unix man page on trwfname(3).

>> output_dbname = [’/tmp/newdb_’ getenv(’USER’)];
>> unix([’/bin/rm -f ’ output_dbname ’*’]);
K. Lindquist 7/16/06

105
>> db = dbopen(output_dbname,’r+’);
>> db = dblookup_table(db, ’wfdisc’);

>> nsamp = 1000;
>> amp = 10000;
>> samprate = 20;
>> time = str2epoch(’9/30/02 11:15 AM’);
>> endtime = tr_endtime(time, samprate, nsamp);

>> db.record = dbaddv(db, ...
 ’sta’, ’FAKE’, ’chan’, ’BHZ’, ’nsamp’, nsamp, ...
 ’samprate’, samprate, ’time’, time, ’endtime’, endtime);

>> path = trwfname(db)

path =

/tmp/2002/273/FAKE.BHZ.2002:273:11:15:00

>> % Alternatively:
>> path = trwfname(db, ’Mydir/station_%{sta}/%A_%B_%o_%Y.data’)

path =

/tmp/Mydir/station_FAKE/Monday_September_30th_2002.data

>>

yearday

This command takes a Unix epoch time and returns year*1000 + day-of-year.

>> yearday(96998400)

ans =

 1973027

>>

zepoch2str
K. Lindquist 7/16/06

106
The zepoch2str command is similar to epoch2str, however one may specify the time-zone in
which one wants the result expressed. An empty string for the time-zone will default to the setting
of the TZ environment variable on the host, which should be the local time-zone on a properly
configured system.

>> myepoch = str2epoch(‘10/13/02 12:00 am’)

myepoch =

 1.0345e+09

>> zepoch2str(myepoch, ‘%m/%d/%Y %H:%M:%S %Z’, ‘US/Alaska’)

ans =

10/12/2002 16:00:00 AKDT

>> zepoch2str(myepoch, ‘%m/%d/%Y %H:%M:%S %Z’, ‘US/Pacific’)

ans =

10/12/2002 17:00:00 PDT

>> zepoch2str(myepoch, ‘%m/%d/%Y %H:%M:%S %Z’, ‘GMT-2’)

ans =

10/13/2002 02:00:00 GMT

>> zepoch2str(myepoch, ‘%m/%d/%Y %H:%M:%S %Z’, ‘’)

ans =

10/12/2002 16:00:00 AKDT

>>

Differences between the Matlab Antelope Toolbox and other
Antelope language interfaces
K. Lindquist 7/16/06

107
The Matlab Antelope toolbox differs in several aspects from the Antelope language interfaces in
C, Tcl, Fortran, and Perl. First, the natural mode of operation in Matlab is to work on entire arrays
at once. Therefore, where possible, Antelope database commands have been expanded to read in
entire matrices of results when appropriate (e.g. dbgetv), or to act on entire matrices at once (e.g.
epoch2str). Similarly, where naming conventions permit, parameter-files may be loaded whole-
sale into Matlab structures with pf2struct, and database tables may be loaded into structures with
db2struct.

Special options to Antelope commands are usually specified with string input arguments, such as
‘backwards’ for dbfind. In many cases the order of placement of these options is important--see
the help pages on each command for details.

The most general interface to Antelope, the C language interface, allows temporary views to be
given user-specified names. This feature is not supported in the current release of the Matlab tool-
box.

Caveats

This toolbox was developed on Sun-solaris 2.6, Matlab version 5.3. It has not been tested with
other platforms and versions. The current version is tested against Sun Solaris 2.8, Linux with the
2.4 kernel, and Matlab 6.5.

Several aspects of this current beta release must be treated with caution. First, the database-
pointer DBPTR and trace-pointer TRPTR objects refer to databases and memory open by the
underlying Antelope libraries. Freeing these objects with the Matlab clear command does not
appropriately close the underlying databases, nor free the corresponding memory. These objects
must be removed from the Matlab workspace with the DBCLOSE and TRDESTROY commands
provided. Note that the DBPTR and TRPTR structures are not objects in the Matlab sense--the
word is being used loosely here, paralleling the Datascope documentation (for the trace objects).
Conceptually they are very similar to objects, though the user can see and manipulate the private
variables directly (useful, for example, to loop over the DBPTR.record field), and also there is no
Matlab class tag. These items have been kept as Matlab structures rather than Objects to preserve
similarity between the Matlab Antelope toolbox and other programming interfaces for Antelope.

The parameter-file objects actually are Matlab objects. Again, though, they must be cleared care-
fully. The clear function is overloaded for the DBPF class of Objects, however at least in Matlab
5.2 the command/function duality is broken by the CLEAR command, and apparently the generic
CLEAR command is not smart enough to call the overloaded methods for DBPF objects. One
must specifically call the CLEAR function (i.e. use parentheses around the argument), or the
equivalent PFFREE function, on the DBPF object. Also, the pf routines may at times return deriv-
ative DBPF objects, representing complex entries in the parent parameter-file (DBPF object).
These first of all are not allowed to be cleared by the PFFREE command. Second, they lose mean-
K. Lindquist 7/16/06

108
ing but unfortunately stay resident when the parent DBPF object (the one returned when the
whole parameter file was read in) is cleared. Acting on them after destroying the originating
DBPF may produce unpredictable results.

There are a lot more trace-library commands available, many of which have not yet been imple-
mented.

The response-file objects are also actually Matlab objects. Just as with the DBPF objects, these
need to be explicitly cleared with the overloaded clear functions, CLEAR(DBRESPONSE) or
equivalently FREE_RESPONSE.

While the doc command works for Antelope Toolbox commands, the Matlab helpdesk search
engine does not yet recognize them. In order to search for Antelope Toolbox commands, use the
matlab lookfor command or the search window in the Matlab helpwin help window.

Unlike the other Antelope language interfaces, the Matlab dbeval is able to return entire columns
of values if the input database pointer refers to more than one row. As a standard feature, dbeval
can return values that are aggregate expressions over the whole table such as max(). If more than
one row is passed to such an aggregate expression in Matlab, the aggregate expression will be
recalculated for each row, which redundancy can cause huge performance drops for a large data-
base. Therefore, unless otherwise necessary, the user should avoid passing multiple rows to
dbeval when using aggregate expressions. See the Unix dbex_eval(3) man pages for the list of
aggregate functions in the Antelope expressions calculator.

The Matlab interface to the orb routines is fairly new, and though tested, the Matlab toolbox rou-
tines have not been extensively used in implementation. There is the possibility of some change if
initial experience shows any inconveniences.

Author

The Antelope Software system, including the Datascope relational-database management
system, is a product of Boulder Real-Time Technologies, Inc., http://brtt.com/

The Antelope Toolbox for Matlab was written by Kent Lindquist, without funding and in his spare
time. Version 1.0 was written while at the University of Alaska’s Geophysical Institute. Version
1.1 is a product of Lindquist Consulting, which is providing continued maintenance and expan-
sion of the interface as time permits.

Acknowledgment
K. Lindquist 7/16/06

109
This project would of course have gone nowhere without the underlying Antelope and Datascope
software package provided by Boulder Real Time Technologies, Inc. The author would like to
thank Danny Harvey for initial impetus, and Dan Quinlan for extensive and valuable technical
consultation and support in this work. Frank Vernon has provided strong and continuous encour-
agement from the beginning of the project. His research group has also provided significant help
in beta-testing and debugging a production release. Beta testing was kindly provided by the
research group of Gary Pavlis (including Scott Neal and Christian Poppeliers) at the University of
Indiana, and by Geoff Abers at the University of Kansas. Local tolerance of experimental versions
has been patiently extended to the author by University of Alaska Matlab users, notably Guy Tyt-
gat. The author is indebted to Jason Crosswhite of the University of Oregon and Ken Dueker of
the University of Wyoming for identifying the compile issues necessary to port this Matlab tool-
box to Linux, as well as for numerous helpful comments. Jason also contributed code for the
interface to the dbsever command.

References

Boulder Real Time Technologies, Inc. http://brtt.com/

Kinemetrics, Inc. http://www.kinemetrics.com/

Mathworks, Inc. http://www.mathworks.com/
K. Lindquist 7/16/06

	Antelope Toolbox for Matlab:
	Introduction
	Installation
	Help
	Opening a Database
	Handling Parametric Data
	Handling Waveform Data
	Response information
	Parameter files
	Advanced Example
	Examples of each command
	arr_slowness
	arrtimes
	cggrid
	cggrid_dx
	cggrid_dy
	cggrid_free
	cggrid_get
	cggrid_getmesh
	cggrid_nx
	cggrid_ny
	cggrid_probe
	cggrid_write
	cggrid2db
	clear_register
	compare_response
	db2struct
	dbadd
	dbadd_remark
	dbaddnull
	dbaddv
	dbclose
	dbcrunch
	dbdelete
	dbeval
	dbextfile
	dbfilename
	dbfind
	dbfree
	dbget
	dbget_remark
	dbgetv
	dbgroup
	dbinvalid
	dbjoin
	dbjoin_keys
	dblist2subset
	dblookup
	dblookup_table
	dbmark
	dbnextid
	dbnojoin
	dbnrecs
	dbopen
	dbpf
	dbprocess
	dbput
	dbputv
	dbquery
	dbread_view
	dbresponse
	dbsave_view
	dbseparate
	dbsever
	dbsort
	dbsubset
	dbtheta
	dbungroup
	dbunjoin
	dbwrite_view
	elog_alert
	elog_complain
	elog_debug
	elog_die
	elog_flush
	elog_init
	elog_log
	elog_mark
	elog_notify
	elog_string
	epoch2str
	eval_response
	free_response
	getpid
	orbafter
	orbclose
	orbget
	orbopen
	orbping
	orbreap
	orbreject
	orbseek
	orbselect
	orbtell
	parse_response
	parsepath
	pf2string
	pf2struct
	pffiles
	pffree
	pfget
	pfget_arr
	pfget_boolean
	pfget_num
	pfget_string
	pfget_tbl
	pfkeys
	pfname
	pfput_boolean
	pfput
	pfresolve
	pftype
	pfupdate
	pfwrite
	str2epoch
	strdate
	strtdelta
	strtime
	strydtime
	tr_endtime
	tr_nsamp
	tr_samp2time
	tr_samprate
	tr_time2samp
	tr2struct
	trapply_calib
	trdestroy
	trextract_data
	trfilter
	trfree
	trgetwf
	trinsert_data
	trload_css
	trload_cssgrp
	trnew
	trputwf
	trrotate
	trrotate_to_standard
	trsave_wf
	trsplice
	trwfname
	yearday
	zepoch2str

	Differences between the Matlab Antelope Toolbox and other Antelope language interfaces
	Caveats
	Author
	Acknowledgment
	References

